

GCE

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2006

3890-2/7890-2/MS/R/06

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2006

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone: Facsimile:

0870 870 6622 0870 870 6621

F-mail:

publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	13
4724	Core Mathematics 4	19
4725	Further Pure Mathematics 1	25
4726	Further Pure Mathematics 2	31
4727	Further Pure Mathematics 3	35
4728	Mechanics 1	41
4729	Mechanics 2	47
4730	Mechanics 3	51
4731	Mechanics 4	57
4732	Probability & Statistics 1	65
4733	Probability & Statistics 2	71
4734	Probability & Statistics 3	75
4735	Probability & Statistics 4	79
4736 4736	Decision Mathematics 1	83
4730 4737	Decision Mathematics 2	89
4/3/ *	Grade Thresholds	97

Mark Scheme 4721 June 2006

1	(i)	$\frac{21-3}{4-1} = \frac{18}{3} = 6$	M1		Uses $\frac{y_2 - y_1}{x_2 - x_1}$
		4-1 3	A1	2	6 (not left as $\frac{18}{3}$)
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 1$	B1		
		$2\times 3+1=7$	B1	2	
2	(i)	$27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{9}$	M1		$\frac{1}{27^{\frac{2}{3}}}$ or $27^{\frac{2}{3}} = 9$ or 3^{-2} soi
			A1	2	$\frac{1}{9}$
	(ii)	$5\sqrt{5}=5^{\frac{1}{2}}$	B1	1	
	(iii)	$\frac{1-\sqrt{5}}{3+\sqrt{5}} = \frac{\left(1-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}$	M1		Multiply numerator and denominator by conjugate
		$=\frac{8-4\sqrt{5}}{4}$	B1		$\left(\sqrt{5}\right)^2 = 5$ soi
		$=2-\sqrt{5}$	A1	3	2 – √5
3	(i)	$2x^{2} + 12x + 13 = 2(x^{2} + 6x) + 13$ $= 2[(x+3)^{2} - 9] + 13$	B1 B1 M1		a = 2 b = 3 $13 - 2b^2$ or $13 - b^2$ or $\frac{13}{2} - b^2$ (their b)
		$=2\left(x+3\right)^2-5$	A1	4	c= -5
	(ii)	$2(x+3)^2 - 5 = 0$	M1	Spanning William Co.	Uses correct quadratic formula or completing square method
		$(x+3)^2 = \frac{5}{2}$ $x = -3 \pm \sqrt{\frac{5}{2}}$	A1		$x = \frac{-12 \pm \sqrt{40}}{4}$ or $(x+3)^2 = \frac{5}{2}$
W. The second se	***************************************	$x = -3 \pm \sqrt{\frac{3}{2}}$	A1	3	$x = -3 \pm \sqrt{\frac{5}{2}} \text{or} -3 \pm \frac{1}{2} \sqrt{10}$
ļ					

			54		2 2 2 1
4	(i)	(x-4)(x-3)(x+1)	B1		$x^2 - 7x + 12$ or $x^2 - 2x - 3$ or $x^2 - 3x - 4$ seen
		$\equiv (x^2 - 7x + 12)(x+1)$ $\equiv x^3 + x^2 - 7x^2 - 7x + 12x + 12$	M1		Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term
		$= x^3 - 6x^2 + 5x + 12$	A1	3	expansion of all 3 brackets $x^3 - 6x^2 + 5x + 12$ (AG) obtained (no wrong working seen)
	(ii)	/c1	B1		+ve cubic with 3 roots (not 3 line segments)
	(iii)		B1		-
			B1		(0, 12) labelled or indicated on <i>y</i> -axis
			The state of the s	3	(-1, 0), (3,0), (4, 0) labelled or indicated on <i>x</i> -axis
			M1		
		\C2,	A1√	2	Reflect their (ii) in either x- or y-axis
					Reflect their (ii) in x-axis
5	(i)	1 < 4x - 9 < 5	M1		2 equations or inequalities both dealing with all 3 terms
		$ \begin{array}{r} 10 < 4x < 14 \\ 2.5 < x < 3.5 \end{array} $	A1		2.5 and 3.5 seen oe
			A1	3	2.5 < x < 3.5 (or 'x > 2.5 and x < 3.5')
	(ii)	$y^2 \ge 4y + 5$	В1		$y^2 - 4y - 5 = 0$ soi
	(")	$y^2 - 4y - 5 \ge 0$	M1		Correct method to solve quadratic
		$(y-5)(y+1) \ge 0$	A1		-1, 5 (SR If both values obtained from trial
		$y \le -1, y \ge 5$			and improvement, award B3)
			M1		Correct method to solve inequality
			A1	5	$y \le -1, y \ge 5$

6	(i)	$x^4 - 10x^2 + 25 = 0$ Let $y = x^2$	*M1		Use a substitution to obtain a quadratic or $(x^2 - 5) (x^2 - 5) = 0$
		$y^2 - 10y + 25 = 0$			or $(x - 5)(x - 5) = 0$
		$y^2 - 10y + 23 = 0$ $(y-5)^2 = 0$	dep*M1		Correct method to solve a quadratic
		y = 5	A1		5 (not x = 5 with no subsequent working)
		$x^2 = 5$ $x = \pm \sqrt{5}$	A1	4	$x = \pm \sqrt{5}$
	(ii)	$2x^5 + 20x^3 = 5$	B1		2x ⁴ or - 20x ² oe seen
		$y = \frac{2x^5}{5} - \frac{20x^3}{3} + 50x + 3$ $\frac{dy}{dx} = 2x^4 - 20x^2 + 50$	B1	2	$2x^4 - 20x^2 + 50$ (integers required)
		$\frac{1}{dx} = 2x^2 - 20x^2 + 30$			
	(iii)	$2x^4 - 20x^2 + 50 = 0$ $x^4 - 10x^2 + 25 = 0$	M1		their $\frac{dy}{dx} = 0$ seen (or implied by correct
		$\begin{array}{c} x - 10x + 25 = 0 \\ \text{which has 2 roots} \end{array}$	A1	2	answer) 2 stationary points www in any part
7	(i)	$y = x^2 - 5x + 4$			
		$\begin{vmatrix} y = x - 1 \\ x^2 - 5x + 4 = x - 1 \end{vmatrix}$	M1		Substitute to find an equation in x (or y)
		$x^2 - 6x + 5 = 0$	М1		Correct method to solve quadratic
		(x-1)(x-5)=0			4 5
		x=1 $x=5$	A1 A1	1	x = 1, 5 y = 0, 4
		y = 0 y = 4			(N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part (ii))
					SR one correct (x,y) pair www B1
	(ii)	2 points of intersection	B1	1	
	(iii)	EITHER $x^2 - 5x + 4 = x + c$ has 1 solution	M1		$x^2 - 5x + 4 = x + c $ has 1 soln seen or
		$x^{2} - 6x + (4 - c) = 0$ $b^{2} - 4ac = 0$	M1		implied Discriminant = 0 or $(x - a)^2 = 0$ soi
		36 - 4(4 - c) = 0	A1		36 - 4(4 - c) = 0 or $9 = 4 - c$
		c = -5 OR	A1		c = -5
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 = 2x - 5$	M1		Algebraic expression for gradient of
		$\begin{vmatrix} ax \\ x = 3 & y = -2 \end{vmatrix}$			curve = non-zero gradient of line used
-		-2 = 3 + c	A1		2x - 5 = 1
		c = -5	A1		x = 3
			A1	1	4 $c = -5$ SR $c = -5$ without any working B1
L					3R C 3 Williout any working B1

8	(i)	Height of box = $\frac{8}{x^2}$	*B1		Area of 1 vertical face = $\frac{8}{x^2} \times x$
The state of the s		4 vertical faces = $4 \times \frac{8}{x}$ $= \frac{32}{x}$	*B1		$=\frac{8}{x}$
The state of the s		Total surface area = $x^2 + x^2 + \frac{32}{x}$	B1 dep on both **		Correct final expression
		$A = 2x^2 + \frac{32}{x}$		3	
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4x - \frac{32}{x^2}$	B1 B1 B1	3	$4x$ kx^{-2} $-32x^{-2}$ $\frac{dA}{dx} = 0 \text{soi}$
	(iii)	$4x - \frac{32}{x^2} = 0$ $4x^3 = 32$	M1		$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \text{soi}$
		$\begin{vmatrix} 4x^3 = 32 \\ x = 2 \end{vmatrix}$	A1		x = 2
			M1 A1	4	Check for minimum Correctly justified
THE RESERVE THE PROPERTY OF TH			To do do de la companyo de la compan		SR If x = 2 stated www but with no evidence of differentiated expression(s) having been used in part (iii) B1

9	(i)	(4+10, -2+6)	M1		Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
		$\left(\frac{4+10}{2}, \frac{-2+6}{2}\right)$			
		(7, 2)	A1	2	(7, 2) (integers required)
	(ii)	$\sqrt{(7-4)^2+(22)^2}$	M1		Uses $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
		$= \sqrt{3^2 + 4^2} $ = 5	A1	2	5
	(iii)	$(x-7)^2 + (y-2)^2 = 25$	B1√		$(x-7)^2$ and $(y-2)^2$ used (their centre)
			B1√		$r^2 = 25$ used (their r^2)
			B1	3	$(x-7)^2 + (y-2)^2 = 25$ cao
					Expanded form: -14x and -4y used B1√
					$r = \sqrt{g^2 + f^2 - c}$ used B1 $$
					$x^2 + y^2 - 14x - 4y + 28 = 0$ B1 cao
					By using ends of diameter: (x-4)(x-10) + (y+2)(y-6) = 0 Both x brackets correct B1 Both y brackets correct B1 Final equation fully correct B1
	(iv)	Gradient of $AB = \frac{62}{10 - 4} = \frac{4}{3}$	B1		oe
		Gradient of tangent = $-\frac{3}{4}$	B1√		
			M1		Correct equation of straight line through A, any non-zero gradient
		$y2=-\frac{3}{4}(x-4)$	A1		, if any non-more granaming
	-	$y2 = -\frac{3}{4}(x - 4)$ $3x + 4y = 4$	A1	5	a ,b, c need not be integers

Mark Scheme 4722 June 2006

1		$(3x-2)^4 = 81x^4 - 216x^3 + 216x^2 - 96x + 16$	M1		Attempt binomial expansion, including attempt at coeffs.
			A1		Obtain one correct, simplified, term
			A1		Obtain a further two, simplified, terms
			A1	4	Obtain a completely correct expansion
				4	
2	(i)	$u_2 = -1, u_3 = 2, u_4 = -1$	B1		For correct value -1 for u_2
	\''	w ₂	B1	2	For correct values for both u_3 and u_4
		(2 (1)	M1		For correct interpretation of Σ notation
	(ii)	Sum is $(2+(-1))+(2+(-1))++(2+(-1))$	M1		For pairing, or 50×2-50×1
		i.e. $50 \times (2 + (-1)) = 50$	A1	3	For correct answer 50
		1.0. 30.1(2.1(1.1))	***************************************	5	
3		1	M1		For attempt to integrate
٦		$y = 4x^{2} + c$	A1		For integral of the form $kx^{\frac{1}{2}}$
			A1		For $4x^{\frac{1}{2}}$, with or without +c
					For relevant use of $(4, 5)$ to evaluate c
		Hence $5 = 4 \times 4^{\frac{1}{2}} + c \Rightarrow c = -3$	M1		For correct value -3 (or follow through on integral
			A1√		of form $kx^{\frac{1}{2}}$)
		So equation of the curve is $y = 4x^{\frac{1}{2}} - 3$			For correct statement of the equation in full (aef)
		30 equation of the darve to y	A1	6	,
	(:)	Intersect where $x^2 + x - 2 = 0 \Rightarrow x = -2,1$	M1	╁ ┻	For finding <i>x</i> at both intersections
4	(i)	Intersect where $x^2 + x - 2 = 0 \Rightarrow x = -2,1$	A1	2	For both values correct
	(ii)	Area under curve is $\left[4x - \frac{1}{3}x^3\right]_{2}^{1}$	М1		For integration attempt with any one term correct
		7410a andor barro to [13 3 1]-2			For use of limits – subtraction and correct order
			M1		For use of littles - subtraction and correct order
		i.e. $\left(4 - \frac{1}{3}\right) - \left(-8 + \frac{8}{3}\right) = 9$	A1		For correct area of 9
		1.e. $(4-\frac{1}{3})^{-1}(-8+\frac{1}{3})^{-1}$			
		Avec of triangle is 414	M1		Attempt area of triangle (½bh or integration)
		Area of triangle is 4½	A1		Obtain area of triangle as 4 ½
		Hence shaded area is 9 – 41/2 = 41/2	A1	6	Obtain correct final area of 4 ½
		TIONO CHARGE STORY			
		OR	M1		Attempt subtraction – either order
			M1		For integration attempt with any one term correct
		Area under curve is $\int_{-2}^{1} (2-x-x^2) dx$	l l		Obtain $\pm \left[-\frac{1}{3} x^3 - \frac{1}{2} x^2 + 2x \right]$
		$= \left[-\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x \right]_{-2}^{1}$	A1		L 5 2 J
		$= \left(-\frac{1}{3} - \frac{1}{2} + 2\right) - \left(\frac{8}{3} - 2 - 4\right)$	3.64		For use of limits – subtraction and correct order
			M1		Obtain ± 4 ½ - consistent with their order of
		$=4\frac{1}{2}$	A1		subtraction
	İ		A1		Obtain 4 ½ only, following correct method only
				8	

5	(i)	$\sin^2 x = 1 - \cos^2 x \Rightarrow 2\cos^2 x + \cos x - 1 = 0$	M1		For transforming to a quadratic in cos x
		Hence $(2\cos x - 1)(\cos x + 1) = 0$	M1		For solution of a quadratic in cos x
		$\cos x = \frac{1}{2} \Rightarrow x = 60^{\circ}$	A1		For correct answer 60°
		$\cos x = -1 \Rightarrow x = 180^{\circ}$	A1	4	For correct answer 180° [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2
	(ii)	$\tan 2x = -1 \Rightarrow 2x = 135 \text{ or } 315$	M1 M1		For transforming to an equation of form tan2x = k For correct solution method, i.e. inverse tan followed by division by 2
		Hence $x = 67.5^{\circ}$ or 157.5°	A1 A1	4	For correct value 67.5 For correct value 157.5
		OR $\sin^2 2x = \cos^2 2x$ $2\sin^2 2x = 1$ $2\cos^2 2x = 1$ $\sin 2x = \pm \frac{1}{2}\sqrt{2}$ $\cos 2x = \pm \frac{1}{2}\sqrt{2}$ Hence $x = 67.5^\circ$ or 157.5°	M1 M1 A1 A1	8	Obtain linear equation in cos 2x or sin 2x Use correct solution method For correct value 67.5 For correct value 157.5 [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2
		- 01007	M1	 •	For relevant use of $a + (n-1)d$
6	(i)	(a) $100 + 239 \times 5 = £1295$	A1	2	For correct value 1295
		(b) $\frac{1}{2} \times 240 \times (100 + 1295) = £167400$	M1		For relevant use of $\frac{1}{2}n(a+l)$ or equivalent
			A1	2	For correct value 167400
	(ii)	$100r^{239} = 1500 \Rightarrow r = 1.01139$	B1 M1 A1 M1		For correct statement of $100r^{239} = 1500$ Attempt to find r For correct value 1.01 For relevant use of GP sum formula
		Hence total is $\frac{100(1.01139^{240} - 1)}{1.01139 - 1} = £124359$	A1	5	For correct value 124359 (3 s.f. or better)
				9	

7	(i)	$AC^2 = 11^2 + 8^2 - 2 \times 11 \times 8 \times \cos 0.8$ = 62.3796 Hence AC=7.90 cm	M1 A1 A1	3	Attempt to use the cosine formula Correct unsimplified expression Show the given answer correctly	
	(ii)	Area of sector = $\frac{1}{2} \times 7.90^2 \times 1.7 = 53.0$ Area of triangle = $\frac{1}{2} \times 7.90^2 \times \sin 1.7 = 30.9$ Hence shaded area = 22.1 cm ²	M1 M1 A1	3	Attempt area of sector using $(\frac{1}{2})r^2\theta$ Attempt area of $\triangle ACD$, using $(\frac{1}{2})r^2\sin\theta$, or equiv Obtain 22.1	
The state of the s	(iii)	(line) $DC = 7.90 \times 1.7 = 13.4$ (line) $DC^2 = 7.90^2 + 7.90^2 - 2 \times 7.90 \times 7.90 \times \cos 1.7$ DC = 11.9 Hence perimeter = 25.3cm	M1 A1 M1 A1	4	Use $r\theta$ to attempt arc length Obtain 13.4 Attempt length of line DC using cosine rule or equiv. Obtain 25.3	
8		$f(2) = 12 \Rightarrow 4a + 2b = 6$ $f(-1) = 0 \Rightarrow a - b = 12$ Hence $a = 5$, $b = -7$	M1 A1 M1 A1 M1 A1	6	For equating $f(2)$ to 12 For correct equation $4a + 2b = 6$ For equating $f(-1)$ to 0 For correct equation $a - b = 12$ For attempt to find a and b For both values correct	
The state of the s	(ii)	Quotient is $2x^2 + x - 9$ Remainder is 8	B1 M1 A1 M1 A1	5 11	For correct lead term of $2x^2$ For complete division attempt or equiv For completely correct quotient For attempt at remainder – either division or f(–2) For correct remainder	

9 (i	in T				
9			M1 A1 B1	3	Attempt sketch of any exponential graph, in at least first quadrant Correct graph – must be in both quadrants For identification of (0, 1)
(i	ii)	$A \approx \frac{1}{2} \times 0.5 \times \left\{ 1 + 2 \left(0.5^{\frac{1}{2}} + 0.5 + 0.5^{\frac{3}{2}} \right) + 0.5^{2} \right\}$ \$\approx 1.09\$	B1 M1 A1 A1	4	State, or imply, at least three correct <i>y</i> -values For correct use of trapezium rule, inc correct <i>h</i> For correct unsimplified expression For the correct value 1.09, or better
	(iii)	$\left(\frac{1}{2}\right)^{x} = \frac{1}{6} \implies x \log_{10} \frac{1}{2} = \log_{10} \frac{1}{6}$	M1	1	For equation $\left(\frac{1}{2}\right)^x = \frac{1}{6}$ and attempt at logs
		$x = \frac{\log_{10} \frac{1}{6}}{\log_{10} \frac{1}{2}} = \frac{-\log_{10} 6}{-\log_{10} 2}$	A1		Obtain $x \log(\frac{1}{2}) = \log(\frac{1}{6})$, or equivalent
		Hence $=\frac{\log_{10} 2 + \log_{10} 3}{\log_{10} 2}$	M1		For use of log 6 = log 2 + log 3
		$ \log_{10} 2 \\ = 1 + \frac{\log_{10} 3}{\log_{10} 2} $	A1	4	For showing the given answer correctly
		OR	M1 A1		For equation $2^x = 6$ and attempt at logs Obtain $x \log 2 = \log 6$, or equivalent
		$= \frac{\log_{10} 2 + \log_{10} 3}{\log_{10} 2}$	M1		For use of log 6 = log 2 + log 3
		$=1+\frac{\log_{10} 3}{\log_{10} 2}$	A1		For showing the given answer correctly
		OR			
		$\left(\frac{1}{2}\right)^{x} = \frac{1}{6} \Longrightarrow 2^{x} = 6$ $2^{x-1} = 3$	M1		Attempt to rearrange equation to $2^n = 3$
		$(x-1)\log_{10} 2 = \log_{10} 3$	A1		Obtain $2^{x-1} = 3$
		Hence $x = 1 + \frac{\log_{10} 3}{\log_{10} 2}$	M1		For attempt at logs
		or log ₁₀ 2	A1		For showing the given answer correctly
		$x = \frac{\log_{10} 2 + \log_{10} 3}{2}$			
		$\log_{10} 2$ $= \log_{10} 6$	M1		Use log 2 + log 3 = log 6
		log _{io} 2	A1		Obtain xlog 2 = log 6
		$x \log_{10} 2 = \log_{10} 6$ $\log_{10} 2^{x} = \log_{10} 6$	M1		Attempt to remove logarithms
		$2^x = 6$ $\left(\frac{1}{2}\right)^x = \frac{1}{6}$		11	Show $\left(\frac{1}{2}\right)^x = \frac{1}{6}$ correctly

Mark Scheme 4723 June 2006

1		Differe	ntiate to obtain $k(4x+1)^{-\frac{1}{2}}$	M1		6	any non-zero constant k
		Obtain	$2(4x+1)^{-\frac{1}{2}}$	Α1		(or equiv, perhaps unsimplified
			$\frac{2}{3}$ for value of first derivative	Α1			or unsimplified equiv
			t equation of tangent through (2, 3)	M1			using numerical value of first derivative provided derivative is of form $k'(4x+1)^n$
		Obtain	$y = \frac{2}{3}x + \frac{5}{3}$ or $2x - 3y + 5 = 0$	A1	5	5 (or equiv involving 3 terms
2		Fither:	Attempt to square both sides	М1		1	producing 3 terms on each side
_			Obtain $3x^2 - 14x + 8 = 0$	A1		(or inequality involving < or >
			Obtain correct values $\frac{2}{3}$ and 4	Α1			
			Attempt valid method for solving inequality	M1			implied by correct answer or plausible incorrect answer
			Obtain $\frac{2}{3} < x < 4$	A1	ŧ		or correctly expressed equiv;
			3				allow ≤ signs
		<u>Or</u> :	Attempt solution of two linear equations or inequalities	M1		5	one eqn with signs of 2x and x the same, second eqn with signs different
			Obtain value $\frac{2}{3}$	Α1			
			Obtain value 4 Attempt valid method for solving inequality	B1 M1			implied by correct answer or plausible incorrect answer
			Obtain $\frac{2}{3} < x < 4$	A1	(5)	or correctly expressed equiv; allow ≤ signs
3	(i)	Obtain	ot evaluation of cubic expression at 2 and 3 -11 and 31 ude by noting change of sign	M1 A1 A1		3	or equiv; following any calculated
							values provided negative then positive
	(ii)		n correct first iterate ot correct process to obtain at least 3 iterate n 2.34	B1 s M1	1	3	using x_1 value such that $2 \le x_1 \le 3$ using any starting value now answer required to 2 d.p. exactly; $2 \rightarrow 2.3811 \rightarrow 2.3354 \rightarrow 2.3410$; $2.5 \rightarrow 2.3208 \rightarrow 2.3428 \rightarrow 2.3401$; $3 \rightarrow 2.2572 \rightarrow 2.3505 \rightarrow 2.3392$

(i) State $\ln y = (x-1) \ln 5$

Obtain $x = 1 + \frac{\ln y}{\ln 5}$

- whether following $\ln y = \ln 5^{x-1}$ or **B1** not; brackets needed
- B1 2 AG; correct working needed; missing brackets maybe now implied
- (ii) Differentiate to obtain single term of form $\frac{k}{n}$ M1

- Obtain $\frac{1}{y \ln 5}$ A1 2 or equiv involving y
- or equiv method for finding **M1** (iii) Substitute for y and attempt reciprocal derivative without using part (ii)

A1 2 or exact equiv Obtain 25 ln 5

(i) State $\sin 2\theta = 2 \sin \theta \cos \theta$

1 or equiv; any letter acceptable here **B1** (and in parts (ii) and (iii))

(ii) Attempt to find exact value of cos α

Obtain $\frac{1}{4}\sqrt{15}$ Substitute to confirm $\frac{1}{8}\sqrt{15}$

using identity attempt or right-M1 angled triangle

or exact equiv **A1**

Α1 3 AG

any constant k

(iii) State or imply $\sec \beta = \frac{1}{\cos \beta}$

Use identity to produce equation involving $\sin \beta$ Obtain $\sin \beta = 0.3$ and hence 17.5

B1

М1 3 and no other values between 0 and A1 90; allow 17.4 or value rounding to 17.4 or 17.5

maybe implied **B1** 6 (i) Either: Obtain f(-3) = -7Show correct process for compn of functionsM1

A1 3 Obtain -47

- using algebraic approach Show correct process for compn of functionsM1 <u>Or</u>: or equiv **A1** Obtain $2 - (2 - x^2)^2$ A1 (3) Obtain -47
- (ii) Attempt correct process for finding inverse Obtain either one of $x = \pm \sqrt{2 - y}$ or both Obtain correct $-\sqrt{2-x}$

as far as x = ... or equiv M1 or equiv perhaps involving x Α1 3 or equiv; in terms of x now

(iii) Draw graph showing attempt at reflection in y = x**M1** with end-point on x-axis and no **A1** Draw (more or less) correct graph minimum point in third quadrant

A1 3 accept -1.4 in place of $-\sqrt{2}$ Indicate coordinates 2 and $-\sqrt{2}$

any non-zero constant k 7 (a) Obtain integral of form $k(4x-1)^{-1}$ M1

		·			June 2000
		Obtain $-\frac{1}{2}(4x-1)^{-1}$	A1		or equiv; allow + c
		Substitute limits and attempt evaluation	M1		
		Cabolitate in mic and attempt evaluation	IAS I		for any expression of form $k'(4x-1)^n$
		Obtain $\frac{2}{21}$			•
		Obtain 21	AT	4	or exact equiv
	(b)	Integrate to obtain In x	B1		•
	(~)	Substitute limits to obtain In 2a – In a	B1		
		Subtract integral attempt from attempt at area			
		of appropriate rectangle	M1		or equiv
		Obtain 1 – (In 2a – In a)	A1		or equiv
		Show at least one relevant logarithm property	M1		at any stage of solution
		Obtain $1 - \ln 2$ and hence $\ln(\frac{1}{2}e)$	A1	6	AG; full detail required
8	/:X	State <i>R</i> = 13	5 .4		
0	(1)	State at least one equation of form $R \cos \alpha = k$,	B1		or equiv
		R sin $\alpha = k'$, tan $\alpha = k''$	884		or on the all and the
		$N \sin \alpha - N$, $\tan \alpha - \chi$	M1		or equiv; allow sin / cos
		Obtain 67.4	Δ1	3	muddles; implied by correct α allow 67 or greater accuracy
			~ '	3	allow or or greater accuracy
	(ii)	Refer to translation and stretch	M1		in either order; allow here equiv
					terms such as 'move', 'shift';
					with both transformations
		Cinto inconclation in monthly and the Control of		,	involving constants
		State translation in positive <i>x</i> direction by 67.4	A11	ł	or equiv; following their α ; using
		State stretch in <i>y</i> direction by factor 13	A 4 a	1 2	correct terminology now
		otate stretch in y direction by factor 15	AIN	Ų	or equiv; following their R; using correct terminology now
					correct terrimology now
	(iii)	Attempt value of $\cos^{-1}(2+R)$	M1		
		Obtain 81.15	A1\	l	following their R; accept 81
		Obtain 148.5 as one solution	A1	•	accept 148.5 or 148.6 or value
		•			rounding to either of these
		Add their α value to second value			3
		correctly attempted	M1		
		Obtain 346.2	A1	5	accept 346.2 or 346.3 or value
					rounding to either of these; and
					no other solutions

Obtain
$$x = e^{\frac{1}{2}y} + 1$$

State or imply volume involves $\int \pi x^2$

Attempt to express x^2 in terms of y

Obtain
$$k \int (e^{y} + 2e^{\frac{1}{2}y} + 1) dy$$

Integrate to obtain
$$k(e^y + 4e^{\frac{1}{2}y} + y)$$

Use limits 0 and p

Obtain
$$\pi(e^p + 4e^{\frac{1}{2}p} + p - 5)$$

(ii) State or imply
$$\frac{dp}{dt} = 0.2$$

Obtain $\pi(e^p + 2e^{\frac{1}{2}p} + 1)$ as derivative of VAttempt multiplication of values or expressions

for
$$\frac{\mathrm{d}p}{\mathrm{d}t}$$
 and $\frac{\mathrm{d}V}{\mathrm{d}p}$

Obtain $0.2\pi(e^4 + 2e^2 + 1)$

Obtain 44

A1 or equiv

B1

*M1 dep *M; expanding to produce at least 3 terms

A1 any constant *k* including 1; allow if d*y* absent

A1

M1 dep *M *M; evidence of use of 0 needed

A1 8 AG; necessary detail required

B1 maybe implied by use of 0.2 in product

B1

M1

A1 $\sqrt{}$ following their $\frac{dV}{dp}$ expression

A1 5 or greater accuracy

Mark Scheme 4724 June 2006

$$1 \qquad \frac{\mathrm{d}}{\mathrm{d}x}(xy) = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$$

s.o.i. e.g.
$$2x \frac{dy}{dx} + y$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(y^2) = 2y \frac{\mathrm{d}y}{\mathrm{d}x}$$

B1

Substitute (1,2) into their differentiated equation

M1 dep at

Or attempt to solve their diff equation for $\frac{dy}{dx}$

and attempt to solve for $\frac{dy}{dx}$. [Allow subst of (2,1)] least 1 x B1

and then substitute (1,2)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2$$

A1

2 (i)
$$1+(-2)(-3x)+\frac{(-2)(-3)}{1.2}(-3x)^2+\dots$$
 ignore)

M1

State or imply; accept $-3x^2 & -9x^2$

$$= 1 + 6x$$
$$\dots + 27x^2$$

B1 A1

Correct first 2 terms 3 Correct third term

(ii)
$$(1+2x)^2(1-3x)^{-2}$$

MI M1 For changing into suitable form, seen/implied

Attempt to expand $(1+2x)^2$ & select (at least) 2 relevant products and add

A2√

4 If (i) is $a + bx + cx^2$, f.t. 4(a+b)+c

Selection may be after multiplying out

(Accept $55x^2$) <u>SR 1</u> For expansion of $(1+2x)^2$ with 1 error, A1 $\sqrt{ }$

SR 2 For expansion of $(1+2x)^2$ & > 1 error, A0

Alternative Method

For correct method idea of long division

 $1 \dots +10x \dots +55x^2$

M1

A1,A1,A1(4)

3 (i)
$$\frac{A}{x} + \frac{B}{3-x}$$
 & c-u rule or $A(3-x) + Bx = 3-2x$

M1

Correct format + suitable method

3 (i)
$$\frac{-1}{x} + \frac{-1}{3-x}$$
 & c-u rule of $A(3-x) + Bx = 3-2x$
 $\frac{1}{3-x} + \frac{1}{3-x} = \frac{1}{3-x}$

ΑI

seen in (i) or (ii)

A1

3 ditto; $\frac{1}{x} - \frac{1}{3-x}$ scores 3 immediately

(ii)
$$\int \frac{1}{x} (dx) = \ln x \text{ or } \ln |x|$$

B1

Check sign carefully; do not allow ln(x-3)

Correct method idea of substitution of limits $\ln 2 (+ \ln 1 - \ln 1) - \ln 2 = 0$

M1 **A1**

Dep on an attempt at integrating 4 Clearly seen; WWW AG

Alternative Method

If ignoring PFs, $\ln x(3 - x)$ immediately

B2

 $\ln x(x-3) \rightarrow 0$

M1,A1 (4) As before

(iii) Suitable statement or clear implication e.g. Equal amounts (of area) above and below (axis) or graph crosses axis or there's a root (Be lenient)

В1

Irrespective of label M1 (i) Working out b - a or a - b or c - a or a - cIf not scored, these 1st 3 marks can be $\pm (-3\mathbf{i} - \mathbf{j} - \mathbf{k})$ or $\pm (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ A1) awarded in part (ii) **M1** Method for finding magnitude of any vector Method for finding scalar product of any 2 vectors M1 Using $\cos \theta = \frac{a.b}{|a||b|}$ AEF for any 2 vectors **M1** [Alternative cosine rule method $|\overrightarrow{BC}| = \sqrt{6}$ **B1** M1 'Recognisable' form Cosine rule used $45.3^{\circ}, 0.79(0), \frac{\pi}{3.97}$ 6 Do not accept supplement (134.7 etc) A1 (45.289378, 0.7904487) (ii) Use of $\frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \sin \theta$ Accept $\frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC}$ M1 2 Accept from correct supp (134.7 etc) 3.54 (3.5355) or $\frac{5\sqrt{2}}{2}$ A1 (i) $\frac{dA}{dt}$ or kA^2 seen M1 5 $\frac{\mathrm{d}A}{\mathrm{d}t} = kA^2$ A1 2 Accept if based on $\frac{dA}{dt} = kA^2$ or A^2 *M1 (ii) Separate variables + attempt to integrate $-\frac{1}{4} = kt + c$ or $-\frac{1}{k4} = t + c$ or $-\frac{1}{A} = t + c$ A1 Subst one of (0,0), (1,1000) or (2,2000) into eqn. dep*M1 Equation must contain k and/or c This equation must contain k and cdep*M1 Subst another of (0,),(1,1000) or (2,2000) into eqn Substitute A = 3000 into eqn with k and c subst dep*M1 6 Accept 2.33, 2h 20 m Αl (i) Attempt to connect du and dx e.g. $\frac{du}{dx} = e^x$ **M1** But not du = dx6 Use of $e^{2x} = (e^x)^2$ or $(u-1)^2$ s.o.i. A1 Simplification to $\int_{-u}^{u-1} (du)$ WWW 3 AG A1 (ii) Change $\frac{u-1}{u}$ to $1-\frac{1}{u}$ or use parts If parts, may be twice if $\int \ln x \, dx$ is involved MI $\int_{u}^{1} du = \ln u$ Seen anywhere in this part A1 Either attempt to change limits or resubstitute Show as $e+1-\ln(e+1)-\{2 \text{ or } (1+1)\}+\ln 2$ M1 (indep) Expect new limits e+1 & 2 Αl

A1

5 AG

WWW show final result as $e - 1 - \ln\left(\frac{e+1}{2}\right)$

7	•	Produce at least 2 of the 3 relevant eqns in λ and μ Solve the 2 eqns in λ & μ as far as $\lambda =$ or $\mu =$ 1^{st} solution: $\lambda = -2$ or $\mu = 3$ 2^{nd} solution: $\mu = 3$ or $\lambda = -2$ f.t. Substitute their λ and μ into 3^{rd} eqn and find 'a' Obtain $a = 2$ & clearly state that a cannot be 2 Subst their λ or μ (& poss a) into either line eqn	M1 M1 A1 A1√ M1 A1 M1	6	e.g. $1 + 3\lambda = -8 + \mu$, $-2 + \lambda = 2 - 2\mu$
		Point of intersection is -5 i -4 j N.B. In this question, award marks irrespective of labelling of parts	A1	2	Accept any format No f.t. here
8	(i)	Integration method Attempt to change $\cos^2 6x$ into $f(\cos 12x)$	M1		
		$\cos^2 6x = \frac{1}{2} \left(1 + \cos 12x \right)$	A1		with $\cos^2 6x$ as the subject of the formula
		$\int = \frac{1}{2}x + \frac{1}{24}\sin 12x + c$	A1		AG Accept $\frac{1}{2}(x + \frac{1}{12}\sin 12x)$
		Differentiation method Differentiate RHS producing $\frac{1}{2} + \frac{1}{2}\cos 12x$ (E)	B1		2 (* 12
		Attempt to change $\cos 12x$ into $f(\cos 6x)$	M1		Accept $+/-2\cos^2 6x +/-1$
		Simplify (E) WWW to $\cos^2 6x$ + satis finish	A1	3	
	(ii)	Parts with $u = x$, $dv = \cos^2 6x$	*M1		
		$x\left(\frac{1}{2}x + \frac{1}{24}\sin 12x\right) - \int \left(\frac{1}{2}x + \frac{1}{24}\sin 12x\right)dx$	A1		Correct expression only
		$\int \sin 12x \mathrm{d}x = -\frac{1}{12} \cos 12x$	B1		Clear indication somewhere in this part
		Correct use of limits to whole integral	dep*M1		Accept () (-0)
		$\frac{\pi^2}{288} - \frac{\pi^2}{576} - \frac{1}{288} - \frac{1}{288}$	A1		AE unsimp exp. Accept 12x24,sin π here
		$\frac{\pi^2}{576} = \frac{1}{144}$	+A1	6	Tolerate e.g. $\frac{2}{288}$ here
		S.R. If final marks are $A0 + A0$, allow SR A1 for			0.01/0.010/0.0101/0.0102/0.0101902

4724

Mark Scheme

June 2006

9 (i)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Used, not just quoted

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -4\sin t$$
 or $\frac{\mathrm{d}y}{\mathrm{d}t} = 3\cos t$

$$\frac{dt}{dy} = -\frac{3\cos t}{4\sin t} \text{ or } \frac{3\cos t}{-4\sin t}$$
 ISW

dep*A1 3 Also $\frac{-3\cos t}{4\sin t}$ provided B0 not awarded

SR: M1 for Cartesian eqn attempt + B1 for $\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$ + A1 as before(must be in terms of t)

(ii)
$$y-3\sin p = \left(\text{their } \frac{dy}{dx}\right)(x-4\cos p)$$

M1

Accept p or t here

or
$$y = \left(\text{their } \frac{dy}{dx}\right)x + c \text{ & subst cords to find c}$$

Ditto

$$4y\sin p - 12\sin^2 p = -3x\cos p + 12\cos^2 p$$

A1

Correct equation cleared of fractions

$$\underline{\text{or }} c = \frac{12\sin^2 p + 12\cos^2 p}{4\sin p}$$

 $3x \cos p + 4y \sin p = 12$ WWW

A1

3 AG Only p here. Mixture earlier \rightarrow A0

(iii) Subst
$$x = 0$$
 and $y = 0$ separately in tangent eqn

M1

to find R & S

Produce
$$\frac{3}{\sin p}$$
 and $\frac{4}{\cos p}$

A1

Accept $\frac{12}{4 \sin p}$ and/or $\frac{12}{3 \cos p}$

Use
$$\Delta = \frac{1}{2} \left(\frac{3}{\sin p} \cdot \frac{4}{\cos p} \right) = \frac{12}{\sin 2p}$$
 WW

A1 3 AG

(iv) Least area = 12

$$p = \frac{1}{4}\pi$$
 as final or only answer

B1 B2

3 These B marks are independent. S.R. $[-12 \text{ and e.g.} - \pi / 4 \rightarrow B1]$

S.R. $45^{\circ} \rightarrow B1$;

Mark Scheme 4725 June 2006

	The state of the s		1	
1.		B1		Two elements correct
	i) $\begin{pmatrix} 7 & 4 \\ 0 & -1 \end{pmatrix}$	В1	2	All four elements correct
	(20)	D 1		A. D. competitive forward
	(ii) $ \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} $	B1		A – B correctly found
	k = 3	B1	2	Find k
			4	
2	(i)	MI		For 2 other correct vertices
		A1	2	For completely correct diagram
	:			
	$\left \begin{array}{cc} \text{(ii)} & \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right) \right $	B1 B1	2	Each column correct
	(0 1)	44-44-44-44-44-44-44-44-44-44-44-44-44-	4	
3.	(i) 2 + 3i	B1	1	Conjugate seen
	(ii)	M1		Attempt to sum roots or consider x terms in
		A1 M1		expansion or substitute 2 – 3i into equation and equate imaginary parts
	p = -4	A1		Correct answer
				Attempt at product of roots or consider last term in expansion or consider real parts
	q = 13		4 5	Correct answer
And the second s				
			<u> </u>	

· ·	2 2	X # 1		
4.	$\sum r^3 + \sum r^2$	M1		Consider the sum as two separate parts
	$\Sigma r^2 = \frac{1}{6} n(n+1)(2n+1)$	A1		Correct formula stated
	$\sum r^3 = \frac{1}{4} n^2 (n+1)^2$	A1		Correct formula stated
	$\frac{1}{12}n(n+1)(n+2)(3n+1)$	M1 A1	5	Attempt to factorise and simplify or expand both expressions Obtain given answer correctly or complete verification
5.	(i) -7i	B1		Real part correct
		B1	2	Imaginary part correct
	(ii) 2 + 3i -5 + 12i	B1 B1 B1	3	iz stated or implied or i ² = -1 seen Real part correct Imaginary part correct
### ** ** ** ** ** ** ** ** ** ** ** **	(iii) $\frac{1}{5}(4-7i)$ or equivalent	M1 A1 A1	3	Multiply by conjugate Real part correct Imaginary part correct N.B. Working must be shown
6	(i) Circle, Centre O radius 2 One straight line Through O with +ve slope In 1 st quadrant only	B1 B1 B1 B1 B1	5	Sketch showing correct features
	(ii) 1 + $i\sqrt{3}$	M1	2	Attempt to find intersections by trig, solving equations or from graph Correct answer stated as complex number
		A1	2 7	Correct answer stated as complex number

7.	(i)	M1		Attempt at matrix multiplication
	$\mathbf{A}^2 = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A}^3 = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}$	A1 A1	3	Correct A ² Correct A ³
	(ii) $\mathbf{A}^{n} = \begin{pmatrix} 2^{n} 0 \\ 0 1 \end{pmatrix}$ (iii)	B1 B1 M1 A1 A1	1 4 8	Sensible conjecture made State that conjecture is true for $n = 1$ or 2 Attempt to multiply \mathbf{A}^n and \mathbf{A} or vice versa Obtain correct matrix Statement of induction conclusion
8.	(i) $a \begin{bmatrix} a & 0 \\ 2 & 1 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & a \\ 1 & 2 \end{bmatrix}$	M1 A1		Correct expansion process shown Obtain correct unsimplified expression
TOTAL	$\begin{bmatrix} 21 \end{bmatrix} \begin{bmatrix} 11 \end{bmatrix} \begin{bmatrix} 12 \end{bmatrix}$ $a^2 - 2a$ (ii)	A1 M1	3	Obtain correct answer Solve their det $\mathbf{M} = 0$
***************************************	a = 0 or $a = 2$	AlAlft	3	Obtain correct answers
	(iii) (a)	B1 B1		Solution, as inverse matrix exists or \mathbf{M} non- singular or $\det \mathbf{M} \neq 0$
**************************************	(b)	B1 B1	4 10	Solutions, eqn. 1 is multiple of eqn 3

9.				
	(i)	M1 A1	(Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1		Attempt to expand and simplify Obtain given answer correctly
	(iii)	B1 B1 M1		Correct $\sum r$ stated $\sum 1 = n$ Consider sum of three separate terms on RHS
	$(n+1)^{3} - 1 - \frac{3}{2}n(n+1) - n$ $\frac{1}{2}n(n+1)(2n+1)$	M1 A1		Required sum is LHS – two terms Correct unsimplified expression
	$\frac{1}{2}n(n+1)(2n+1)$	Al	2	Obtain given answer correctly
			2	
1000			6 10	

10	(i) $\alpha + \beta + \gamma = 2$ $\alpha\beta\gamma = -4$	B1 B1		Write down correct values
	$\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1	3	
•	,	M1		Sum new roots
	(ii)	A1ft		Obtain numeric value using their (i)
****	$\alpha + 1 + \beta + 1 + \gamma + 1 = 5$	A1ft	3	p is negative of their answer
	<i>p</i> = -5	M1*		Expand three brackets
	(iii)	Al		$\alpha\beta\gamma + \alpha\beta + \beta\gamma + \gamma\alpha + \alpha + \beta + \gamma + 1$
		DM1		Use their (i) results
		Alft		Obtain 2
		Alft	5	q is negative of their answer
	q = -2	Ain		
		M2	11	Substitute $x = u - 1$ in given equation
		A1 M1		Obtain correct unsimplified equation for <i>u</i> Expand
		A2 A1 A1		Obtain $u^3 - 5u^2 + 10u - 2 = 0$ State correct values of p and q.

Mark Scheme 4726 June 2006

- 1 Correct expansion of $\sin x$ Multiply their expansion by (1 + x)Obtain $x + x^2 - x^3/6$
- 2 (i) Get $\sec^2 y \frac{dy}{dx} = 1$ or equivalent $\frac{dx}{dx}$ Clearly use 1 + $\tan^2 y = \sec^2 y$ Clearly arrive at A.G.
 - (ii) Reasonable attempt to diff. to $\frac{-2x}{(1+x^2)^2}$ Substitute their expressions into D.E. Clearly arrive at A.G.
- 3 (i) State y = 0 (or seen if working given)
 - (ii) Write as quad. in x² Use for real x, b²-4ac≥0 Produce quad. inequality in y Attempt to solve inequality Justify A.G.
- 4 (i) Correct definition of cosh x or cosh 2x Attempt to sub. in RHS and simplify Clearly produce A.G.
 - (ii) Write as quadratic in cosh x
 Solve their quadratic accurately
 Justify one answer only
 Give In(4 + √15)
 - 5 (i) Get $(t + \frac{1}{2})^2 + \frac{3}{4}$
 - (ii) Derive or quote $dx = \frac{2}{1+t^2}dt$ Derive or quote $\sin x = 2tt(1 + t^2)$ Attempt to replace all x and dxGet integral of form $A/(Bt^2+Ct+D)$ Use complete square form as $\tan^{-1}(f(t))$ Get A.G.

- B1 Quote or derive $x^{-1}/_{6}x^{3}$ M1 Ignore extra terms A1 $\sqrt{ }$ On their sin x; ignore extra terms;
- allow 3!

 SC Attempt product rule M1

 Attempt f(0), f'(0), f"(0) ...

 (at least 3) M1

 Use Maclaurin accurately cao A1
- M1 May be implied A1
- M1 Use of chain/quotient rule
- M1 Or attempt to derive diff. equⁿ.
 A1
 SC. Attempt diff. of $(1+x^2)dv = 1 \text{ M}^2$
- SC Attempt diff. of $(1+x^2)dy = 1 M1,A1$ dx Clearly arrive at A.G. B1
- B1 Must be = ; accept x-axis; ignore any others
- M1 $(x^2y x + (3y-1) = 0)$ M1 Allow >; or < for no real x M1 $1 \ge 12y^2 - 4y$; $12y^2 - 4y - 1 \le 0$ M1 Factorise/ quadratic formula A1 e.g. diagram / table of values of y SC Attempt diff. by product/quotient N Solve $\frac{dy}{dx} = 0$ for two real x
- SC Attempt diff. by product/quotient M1
 Solve dy/dx = 0 for two real x
 Get both (-3,-1/6) and (1,1/2)
 Clearly prove min./max.

 Justify fully the inequality e.g.
 detailed graph

 A1
 B1
 - B1 M1 or LHS if used A1
- M1 (2cosh²x -7cosh x 4 = 0)
 A1√ Factorise/quadratic formula
 B1 State cosh x≥1/graph; allow ≥ 0
 A1 cao; any one of ± ln(4 ± √15) or decimal equivalent of ln ()
- B1 cao
- B1
 M1
 A1√ From their expressions, C≠0
 M1
 From formulae book or substi

6 (i) Attempt to sum areas of rectangles Use G.P. on $h(1+3^h+3^{2h}+...+3^{(n-1)h})$

Simplify to A.G.

(ii) Attempt to find sum areas of different rect. Use G.P. on $h(3^h+3^{2h}+...+3^{nh})$

Simplify to A.G.

(iii) Get 1.8194(8), 1.8214(8) correct

7 (i) Attempt to solve r=0, $\tan \theta = -\sqrt{3}$ Get $\theta = -\frac{1}{3}\pi$ only

(ii) $r = \sqrt{3} + 1$ when $\theta = \frac{1}{4}\pi$

(iii)

M1 $(h.3^h + h.3^{2h} + ... + h.3^{(n-1)h})$

M1 All terms not required, but last term needed (or 3^{1-h}); or specify *a*, *r* and *n* for a G.P.

A1 Clearly use nh = 1

M1 Different from (i)

M1 All terms not required, but last term needed; G.P. specified as in (i), or deduced from (i)

Α1

B1,B1 Allow $1.81 \le A \le 1.83$

M1 Allow $\pm \sqrt{3}$ A1 Allow -60°

B1,B1 AEF for r, 45° for θ

B1 Correct r at correct end-values of θ ; Ignore extra θ used

B1 Correct shape with r not decreasing

(iv) Formula with correct r used Replace $\tan^2\theta = \sec^2\theta - 1$ Attempt to integrate <u>their</u> expression

Get θ + $\sqrt{3}$ In sec θ + $\frac{1}{2}$ tan θ Correct limits to $\frac{1}{2}$ π + $\sqrt{3}$ In $\sqrt{2}$ + $\frac{1}{2}$

8 (i) Attempt to diff. using product/quotient Attempt to solve dy/dx =0 Rewrite as A.G.

(ii) Diff. to f '(x) = $1 \pm 2 \operatorname{sech}^2 x$ Use correct form of N-R with their expressions from correct f(x) Attempt N-R with x_1 = 2 from previous M1 Get x_2 = 1.9162(2) (3 s.f. min.) Get x_3 = 1.9150(1) (3 s.f. min.)

(iii) Work out e_1 and e_2 (may be implied)

M1 r^2 may be implied

B1

M1 Must be 3 different terms leading to any 2 of $a\theta + b \ln(\sec\theta/\cos\theta) + c \tan\theta$

A1 Condone answer x2 if ½ seen elsewhere

A1 cao; AEF

M1

M1

A1 Clearly gain A.G.

B1 Or ± 2 sech²x -1

M1

M1 To get an x2

Α1

A1 cao

B1√ -0.083(8), -0.0012 (allow ± if both of same sign); e_1 from 0.083 to 0.085

Mark Scheme

June 2006

Use $e_2 \approx ke_1^2$ and $e_3 \approx ke_2^2$ Get $e_3 \approx e_2^3/e_1^2 = -0.0000002$ (or 3)

M1 A1 $\sqrt{\pm}$ if same sign as B1 $\sqrt{\pm}$ SC B1 only for $x_4 - x_3$

9 (i) Rewrite as quad. in e^y Solve to $e^y = (x \pm \sqrt{(x^2 + 1)})$ Justify one solution only M1 Any form A1 Allow $y = \ln($) B1 $x - \sqrt{(x^2 + 1)} < 0$ for all real xSC Use $C^2 - S^2 = 1$ for $C = \pm \sqrt{(1 + x^2)}$ M1 Use/state cosh $y + \sinh y = e^y$ A1 Justify one solution only B1

(ii) Attempt parts on sinh x. $\sinh^{n-1}x$ Get correct answer Justify $\sqrt{2}$ by $\sqrt{(1+\sinh^2x)}$ for $\cosh x$ when limits inserted Replace $\cosh^2 = 1 + \sinh^2$; tidy at this stage Produce I_{n-2} Gain A.G. <u>clearly</u>

M1 A1 $(\cosh x.\sinh^{n-1}x - \int \cosh^2x.(n-1)\sinh^{n-2}x dx)$

(iii) Attempt $4I_4 = \sqrt{2} - 3I_2$, $2I_2 = \sqrt{2} - I_0$ Work out $I_0 = \sinh^{-1}1 = \ln(1 + \sqrt{2}) = \alpha$ Sub. back completely for I_4 Get ${}^{1}/_{8}(3 \ln(1+\sqrt{2}) - \sqrt{2})$ A1
A1
M1 Clear attempt at iteration (one at least seen)
B1 Allow *l*₂

M1 A1 AEEF

M1

B1 Must be clear

Mark Scheme 4727 June 2006

1 (a) Identity = 1+0i	B1	For correct identity. Allow 1
Inverse = $\frac{1}{1+2i}$	B1	For $\frac{1}{1+2i}$ seen or implied
$= \frac{1}{1+2i} \times \frac{1-2i}{1-2i} = \frac{1}{5} - \frac{2}{5}i$	B1 3	For correct inverse AEFcartesian
(b) Identity = $ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $	B1	For correct identity
Inverse = $\begin{pmatrix} -3 & 0 \\ 0 & 0 \end{pmatrix}$	B1 2	For correct inverse
	5	
<u>5</u> π	B1	For modulus = 6
2 (a) $(z_1 z_2 =) 6e^{\frac{5}{12}\pi i}$	B1	For argument = $\frac{5}{12}\pi$
$(z_1 2 -\frac{1}{12}\pi i) 2 \frac{23}{12}\pi i$	M1	For subtracting arguments
$\left(\frac{z_1}{z_2} = \frac{2}{3} e^{-\frac{1}{12}\pi i} = \right) \frac{2}{3} e^{\frac{23}{12}\pi i}$	A1 4	For correct answer
(b) $(w^{-5} =) 2^{-5} \operatorname{cis} \left(-\frac{5}{8}\pi\right)$	M1	For use of de Moivre
$(D)(W =) Z \operatorname{cis}(-\frac{\pi}{8}N)$	A1	For $-\frac{5}{8}\pi$ seen or implied
$=\frac{1}{32}\left(\cos\frac{11}{8}\pi+i\sin\frac{11}{8}\pi\right)$	A1 3	For correct answer (allow 2^{-5} and $\operatorname{cis} \frac{11}{8} \pi$)
32\ 8	7	

3	EITHER $c-a = \pm [11, 3, -2]$	B1	For vector joining lines
	$(\mathbf{c} - \mathbf{a}) \times [8, 3, -6]$	M1*	For attempt at vector product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
	$\mathbf{n} = \pm [-12, 50, 9]$	A1√	For obtaining n. f.t. from incorrect c-a
	$d = \frac{ \mathbf{n} }{ [8, 3, -6] }$	M1 (dep*)	For dividing $ \mathbf{n} $ by magnitude of $[8, 3, -6]$
	$=\frac{\sqrt{2725}}{\sqrt{109}}$	A1	For either magnitude correct
	(d=) 5	A1	For correct distance CAO
	$OR \ \mathbf{c} - \mathbf{a} = \pm [11, 3, -2]$	B1	For vector joining lines
	$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $\mathfrak{e}-\mathfrak{a}$ and $[8,3,-6]$
-	$\cos\theta = \pm \frac{109}{\sqrt{134}\sqrt{109}} = \pm \sqrt{\frac{109}{134}}$	A1√	For correct cosθ AEF. f.t. from incorrect c-a
	$d = \sqrt{134} \sin \theta$	M1 (dep*) A1	For using trigonometry for perpendicular distance For correct expression for <i>d</i> in terms of θ
	(d =) 5	A1	For correct distance CAO
-	(d =) 5 OR	B1	For vector joining lines
	$(\mathbf{c} - \mathbf{a}) \cdot [8, 3, -6]$	M1*	For attempt at scalar product of $\mathbf{c} - \mathbf{a}$ and $[8, 3, -6]$
	$x = \frac{109}{\sqrt{109}} = \sqrt{109}$	A1 √	For finding projection of $c-a$ onto [8, 3, -6] f.t. from incorrect $c-a$
	$d = \sqrt{134 - 109}$	M1 (dep*) A1	For using Pythagoras for perpendicular distance
	(d =) 5	A1	For correct expression for <i>d</i> For correct distance CAO
	OR $CP = \pm [-11 + 8t, -3 + 3t, 2 - 6t]$	B1	For finding a vector from C(12, 5, 3)
	$\mathbf{CP} \cdot [8, 3, -6] = 0$	M1*	to a point on the line For using scalar product for perpendicularity
	$t = \pm 1 \ OR \ P = (9, 5, -1)$	A1√	For correct point. f.t. from incorrect CP
	$d = \sqrt{3^2 + 0^2 + 4^2}$	M1 (dep*)	For finding magnitude of CP
	(4 - V) το ττ	A1	For correct expression for d
	(d =) 5	A1 6	For correct distance CAO
	, ,		SR Obtain
			$\mathbf{CP} = [11, 3, -2] - [8, 3, -6] = \pm [3, 0, 4]$ B1
			Verify [3, 0, 4] . [8, 3, -6] = 0 M1*
		- Lange	$d = \sqrt{3^2 + 0^2 + 4^2} = 5$ M1(dep*) A1 A1 (maximum 5 / 6)
		6	(

4 Integrating factor $e^{\int -\frac{x^2}{1+x^3}dx}$	M1	For correct process for finding integrating factor
$= e^{-\frac{1}{3}\ln(1+x^3)} = \left(1+x^3\right)^{-\frac{1}{3}}$	A1	For correct IF, simplified (here or later)
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(y \left(1 + x^3 \right)^{-\frac{1}{3}} \right) = \frac{x^2}{\left(1 + x^3 \right)^{\frac{1}{3}}}$	M1	For multiplying through by their IF
$\Rightarrow y(1+x^3)^{-\frac{1}{3}} = \frac{1}{2}(1+x^3)^{\frac{2}{3}} (+c)$	M1	For integrating RHS to obtain $A(1+x^3)^k$ OR $\ln A(1+x^3)^k$
	A1	For correct integration (+c not required here)
$\Rightarrow 1 = \frac{1}{2} + c \Rightarrow c = \frac{1}{2}$	M1 A1√	For substituting (0, 1) into GS (including + c)
$1(4, 3), 1(4, 3)^{\frac{1}{3}}$	A1	For correct c. f.t. from their GS For correct solution. AEF in form $y = f(x)$
$\Rightarrow y = \frac{1}{2} \left(1 + x^3 \right) + \frac{1}{2} \left(1 + x^3 \right)^{\frac{1}{3}}$	8	TO CONSCIONATION $y = 1(x)$
5 (i) EITHER $\mathbf{a} = [2, 3, 5], \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \pm k [-10, 10, -2]$	M1 A1√	For finding perpendicular to plane For correct n . f.t. from incorrect b
Use (2, 1, 5) <i>OR</i> (0, –1, 5)	M1	For substituting a point into equation $ax + by + cz = d$ where $[a, b, c]$ = their n
$\Rightarrow 5x - 5y + z = 10$	A1	For correct cartesian equation AEF
OR $\mathbf{a} = [2, 3, 5], \mathbf{b} = \pm [2, 2, 0]$	B1	For stating 2 vectors in the plane
e.g. $\mathbf{r} = [2, 1, 5] + \lambda[2, 2, 0] + \mu[2, 3, 5]$	M1	For stating parametric equation of plane
$[x, y, z] = [2 + 2\lambda + 2\mu, 1 + 2\lambda + 3\mu, 5 + 5\mu]$	A1√	For writing 3 equations in x, y, z f.t. from incorrect b
	M1	For eliminating λ and μ
$\Rightarrow 5x - 5y + z = 10$	A1 5	For correct cartesian equation AEF
(ii) [2t, 3t-4, 5t-9]	B1 1	For stating a point A on I_1 with parameter t AEF
(iii) $\pm [2t+5, 3t-7, 5t-13]$	M1	For finding direction of l_2 from A and (–
$\pm [2t+5, 3t-7, 5t-13] \cdot [2, 3, 5] = 0$	M1	5,3, 4) For using scalar product for perpendicularity with any vector involving
$\Rightarrow t=2$	A1	t For correct value of t
$\frac{x+5}{9} = \frac{y-3}{-1} = \frac{z-4}{-3} OR$	A1 4	For a correct equation AEFcartesian
$\frac{x-4}{9} = \frac{y-2}{-1} = \frac{z-1}{-3}$		
9 -1 -3		SR For $2p+3q+5r=0$ and no further
		progress award B1
	10	

·		*
6 (i) $(m^2 + 4 = 0 \Rightarrow) m = \pm 2i$	B1	For correct solutions of auxiliary equation (may be implied by correct CF)
$CF = A\cos 2x + B\sin 2x$	В1	For correct CF (AEtrig but not $Ae^{2ix} + Be^{-2ix}$ only)
$PI = p\sin x (+ q\cos x)$	B1	State a trial PI with at least $p \sin x$
$-p\sin x (-q\cos x) + 4p\sin x (+4q\cos x) = \sin x$	M1	For substituting PI into DE
$\Rightarrow p = \frac{1}{3}, q = 0$	A1	For correct p and q (which may be implied)
$\Rightarrow y = A\cos 2x + B\sin 2x + \frac{1}{3}\sin x$	B1√6	For using GS = CF + PI, with 2 arbitrary constants in CF and none in PI
(ii) $(0,0) \Rightarrow A = 0$	B1√	For correct equation in A and/or B f.t. from their GS
$\frac{dy}{dx} = 2B\cos 2x + \frac{1}{3}\cos x \Rightarrow \frac{4}{3} = 2B + \frac{1}{3}$	M1	For differentiating their GS and
dx		substituting values for x and $\frac{dy}{dx}$
$A = 0, B = \frac{1}{2}$	A1	For correct A and B
4		Allow $A = -\frac{1}{4}i$, $B = \frac{1}{4}i$ from
		$CF A e^{2i x} + B e^{-2i x}$
$\Rightarrow y = \frac{1}{2}\sin 2x + \frac{1}{3}\sin x$	A1 4	For stating correct solution CAO
~	10	
7 (i) $C + iS = 1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} + e^{4i\theta} + e^{5i\theta}$	M1	For using de Moivre, showing at least 3 terms
$=\frac{e^{6i\theta}-1}{e^{i\theta}-1}$	M1	For recognising GP
$={e^{i\theta}-1}$	A1	For correct GP sum
$= \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} \cdot \frac{e^{3i\theta}}{e^{\frac{1}{2}i\theta}} = \frac{e^{3i\theta} - e^{-3i\theta}}{e^{\frac{1}{2}i\theta} - e^{-\frac{1}{2}i\theta}} e^{\frac{5}{2}i\theta}$	A1 4	For obtaining correct expression AG
	M1	For expressing numerator and denominator in terms of sines
(ii) $C + iS = \frac{2i\sin 3\theta}{2i\sin \frac{1}{2}\theta} \cdot e^{\frac{5}{2}i\theta}$	A1	For $k \sin 3\theta$ and $k \sin \frac{1}{2}\theta$
$\operatorname{Re} \Rightarrow C = \sin 3\theta \cos \frac{5}{2}\theta \operatorname{cosec} \frac{1}{2}\theta$	A1	For correct expression AG
Im $\Rightarrow S = \sin 3\theta \sin \frac{5}{2}\theta \csc \frac{1}{2}\theta$	B1 4	For correct expression
(iii) $C = S \implies \sin 3\theta = 0, \tan \frac{5}{2}\theta = 1$	M1	For either equation deduced AEF
		Ignore values outside $0 < \theta < \pi$
$\theta = \frac{1}{3}\pi, \frac{2}{3}\pi$	A1	For both values correct and no extras
$\theta = \frac{1}{10} \pi, \frac{1}{2} \pi, \frac{9}{10} \pi$	A2 4	For all values correct and no extras.
		Allow A1 for any 1 value OR all correct with extras
	12	With Oxido
	1	<u> </u>

8 (i) $r^4 . a \neq a . r^4$	В1	1	For stating the non-commutative product in the given table, or justifying another correct one
(ii) Possible subgroups order 2, 5	B1 B1	2	For either order stated For both orders stated, and no more (Ignore 1)
(iii) (a) {e, a}	B1	2	For correct subgroup For correct subgroup
(b) $\{e, r, r^2, r^3, r^4\}$ (iv) order of $r^3 = 5$ $(ar)^2 = ar.ar = r^4 a.ar = e$ \Rightarrow order of $ar = 2$ $(ar^2)^2 = ar^2 ar.r = ar^2 r^4 a.r = ara.r = e$	B1 M1	_{rest} ation was a city	For correct order For attempt to find $(ar)^m = e$ OR $(ar^2)^m = e$ For correct order
	A1	4	For correct order
$\Rightarrow \text{ order of } ar^2 = 2$ (V) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 B1	erenigi a h kirikidarek Pil	If the border elements $ar ar^2 ar^3 ar^4$ are not written, it will be assumed that the products arise from that order For all 16 elements of the form e or r^m For all 4 elements in leading diagonal = e For no repeated elements in any completed row or column For any two rows or columns correct

Mark Scheme 4728 June 2006

1		Momentum before = 3M -	B1		Ignore g if included; accept
		1200×3			inconsistent directions
		Momentum after = 1200×5	B1		
					(or loss of momentum of
					loaded wagon = 3 <i>M</i>
		:			B1
-					gain of momentum of
		74 T T T T T T T T T T T T T T T T T T T			unloaded wagon = 1200(5 + 3)
					<u>B1)</u>
		3M - 3600 = 6000	M1		Equation with all terms; accept
					with g
		3(1200 + m) - 3600 = 6000	A1		For any correct equation in <i>m</i> ,
		2000			M
		<i>m</i> = 2000	A1	5	
2	(i)		M1		For resolving forces in the i
					direction or for relevant use of
					trigonometry
1		$2.5 = 6.5 \sin \theta$	A1	_	
l .		$\theta = 22.6^{\circ}$	A1	3	AG Accept verification
	(ii)		M1		For resolving forces in the j
					direction or for using
					Pythagoras or relevant
					trigonometry.
		$R = 6.5\cos 22.6^{\circ}$	A1		
		R = 6	A1	3_	

2	/i\			Line segment AB (say) of +ve
3	(i)	<u> </u>	B1	slope from origin Line segment <i>BC</i> (say) of
			B1	steeper +ve slope and shorter time interval than those for AB. SR: If the straight line segments are joined by curves, this B1 mark is not awarded Line segment CD (say) of less steep slope compared with BC.
} } 		/	1 1 1 1 1 1 1	(An (x, t) graph is accepted and the references to more/less steep are reversed.)
 	t t	Time intervals 80, 40, 40 t = 80, 120, 160	B1 B1	May be implied; any 2 correct
	(ii)	Line joining (0, 0) and (160, 360)	B1 ft 6	
; ; ; ;	(iii)	v = 360/160	M1 M1	Woman's velocity (= 2.25) For equation of man's displacement in relevant
 	- 	s = 120 + 4.5(t - 80)	A1	interval Accept omission of -80
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	2.25t	М1	Woman's displacement, awarded even if <i>t</i> is interpreted differently in man's expression
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	$t = 106 \frac{2}{3}$ (107) SR Construction method	A1 5	Accept also 106.6, 106.7 but not 106
1	† •	Plotting points on graph	¦ М1	Candidates reading the
	; 1 ,	paper	A1	displacement intersection from
1	1 1 3	t between 104 and 109 inclusive	! !	graph, then dividing this distance by the woman's
1 1	1 	I HIGHGEFG	1 	speed to find t, also get
‡ ‡	t ! !		! ! !	v = 360/160 M1 as above for
4	(i)	Displacement is 20 m	B1 1	the woman's velocity. 20+c (from integration) B0
	(ii)	; , : #107777723		For using $s(t) = \int v(t)dt$
! 	1 { 1	$s(t) = 0.01t^3 - 0.15t^2 + 2t$	M1 A1	Can be awarded prior to
!	1 1	(+ <i>A</i>) 10 – 15 + 20 + <i>A</i> = 20	M1	cancelling For using s(10) = cv (20)
1		Displacement is] 	
! !	l 	$0.01t^3 - 0.15t^2 + 2t + 5$	A1 4	AG
1 }	¦ (iii)	a = 0.06t - 0.3	M1 A1	For using $a(t) = dv/dt$
1 1 1	\$ 1	0.06t - 0.3 = 0.6	DM1	For starting solving $a(t) = 0.6$ depends on previous M1
1	1	t = 15	A1	1
1 L	! !	Displacement is 35 m	B1 5	:

5	(i)		M1		For using $F = 5$ and $F = \mu R$
·	717	R = mg	M1		
		m = 2.55	A1	3	Accept 2.5 or 2.6
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		B1		
	(ii)a	$P\cos\alpha = 6$	M1		For resolving vertically with 3
	,		IVI I		distinct forces
			6 A E1		
		$R = P\sin \alpha + 25$	A1ft		Or $P \sin \alpha + (\text{cv m})g$
		0.2R = 6	B1		For using $F = 6$ and $F = \mu R$.
					Can be implied by
					$0.2(P\sin\alpha + 25) = 6$
		$0.2(P\sin\alpha + 25) = 6$	M1		For an equation in
		0.2(1 31114 . 20)			$P\sin\alpha$ (=5)after elimination of
					R
		00.00	A1		Accept a r t 40°
		$\alpha = 39.8^{\circ}$			
	(ii)b	$P^2 = 6^2 + 5^2$	M1		For eliminating or substituting
		or <i>P</i> cos39.8° = 6			for α with cv(6). Evidence is
	,	or $P \sin 39.8^{\circ} = 5$			needed that 5 is the value of
					$P\sin \alpha$ (rather than the original
					frictional force)
		P = 7.81	A1	8	Accept a r t 7.8
3	(i)	10500 + 3000 + 1500	M1		For summing 3 resistances
•	177	Driving force below 15000	A1		Accept generalised case or
		gives retardation	' ' '	2	specific instance
		35000 - 15000 = 80000a	M1	-	Newton's second law for
	(ii)	35000 - 15000 - 60000a	IVII		whole train
		Ation in O OF mo ⁻²	A1	2	AG Accept verification
		Acceleration is 0.25 ms ⁻²			For applying Newton's second
	(iii)		M1		For applying Newton's Second
					law to E only, at least 2 forces out of the relevant 3.
					out of the relevant 5.
		35000 - 10500 - 8500 =	A1		
		0.25 <i>m</i>	İ	_	
		Mass is 64000 kg	A1	3	
	(iv)		M1		For applying Newton's second
	(**)				law with all appropriate forces
		-15000 - 15000 = 80000a	A1		a = -0.375
		OR			
		-3000-10500-15000=(80000			
		1			
		- m)a	M1		For applying Newton's second
			'*' '		law to B only, only 1 force
		4500	A1		Or cv(a)
		-1500 = ma	ł	5	
		Mass is 4000 kg	A1	<u>ə</u>	Follow through ov (m) or
	(v)	$-15000 - 10500 \pm T$	D 15		Follow through cv (m_E, a) , or
		= 64000(-	B1ft		accept use of $m_{\rm E}$, a
		0.375)			1
		$T = \pm 1500$ \rightarrow forward force	***		
		on <i>E</i> of 1500 N	B1	2	
		OR (working with A and B)			
		-1500 - 3000 ± T	1		Follow through cv (m_E, a) , or
		= (80000 - 64000)(-	B1ft		accept use of $m_{\rm E}$, a
	1				
			B1		
		0.375) $T = \pm 1500 \Rightarrow \text{ forward force}$	B1		

7 (i) $0 = 6 + (\pm)1.5a$ M1 For using v = u + at with v = 0

7,20					
		$a = (\mp)4ms^{-2}$ -mgsin15° - F = ma	A1 M1		For applying Newton's second
		$-0.1 \times 9.8 \sin 15^{\circ} - F = 0.1 \times (-1.5)$	A1		law with 2 forces
		4) $R = 0.1g\cos 15^{\circ}$ $0.146357 \dots = \mu 0.946607$	B1 M1		For using $F = \mu R$
		 Coefficient is 0.155	A1	7	Anything between 0.15 and 0.16 inclusive
	(ii)	$mg\sin 15^{\circ} > \mu mg\cos 15^{\circ}$ (or tan $15^{\circ} > \mu$)	M1	w ~ -	For comparing weight component with frictional force (or tan 'angle of friction' with μ)
		→ particle moves down	A1	2	Awarded if conclusion is correct even though values are wrong
	(iii)	$(6+0) \div 2 = s \div 1.5$ s = 4.5	M1 A1		For using $(u + v) \div 2 = s \div t$
		$mg\sin 15^{\circ} - F = ma$	M1		For using Newton's second law with 2 forces
		0.25364 0.146357 = 0.1 <i>a</i>	A1		Values must be correct even if not explicitly stated. Note that the correct value of friction may legitimately arise from a wrong value of μ and a wrong
		$v^2 = 2(1.07285)4.5$	M1		value of R For using $v^2 = 2as$ with any value of a
		Speed is 3.11 ms ⁻¹	A1	6	Accept anything rounding to 3.1 from correct working

Mark Scheme 4729 June 2006

1		mgh = 35 x 9.8 x 4	M1			
			A1			
		mgh/t = 1372/10	M1		watch out for extras	
		137 W	A1	4	or 0.137 kW	4
2		$v^2 = 2gh$	M1		kinematics or energy	2
		u=√4g or √39.2 or 6.26	A1		speed of impact (±)	
		v=√2.8g or √27.44 (5.24)	A1		speed of rebound (±)	
		I = ? 0.3(6.26 + 5.24)	M1	_	must be sum of mags. of vels.	_
		3.45 Ns	A1 √	5	$oldsymbol{arsigma}$ must be positive	5
3	(i)	d = 2.25	B1		3/8x6 OG (be generous)	
		h = 1.125 or 1.12 or 1.13 or 9/8	B1	2	horizontal distance	
	(ii)	$T_1 + T_2 = 12$ resolving	М1		if not then next M1 ok	
		vertically				
		T ₁ x 6cos30° = 12xh	M1		or mom(A)T ₂ x6cos30°=	
		(their h)	A1		12(6cos30° — h)	
		mom(O) (their h ok for A1)	A1		or $T_2 = 9.40$	
		$T_1 = 2.60 \text{ N}$ or $3\sqrt{3}/2$	A1	5		7
		$T_2 = 9.40 \text{ N} \int (12 - T_1)$	1	•	•	•
	ļ	above \(\int \) depends on at leas	B1	or un │ 1	or 13.5 kW	
4	-(<u>i)</u>	P = 13500 W 500 = 13500/v	<u>М</u> 1	!	OI 10.5 RVV	
	(ii)	$v = 27 \text{ ms}^{-1}$	A1	2		
	(iii)	15000/25 - 500 = 950a	M1	┟┺╌	2 parts to F	
	\''''	10000.20	A1		A0 for 900a	
		a = 0.105 or $2/19$	A1	3	or 100/950	
	(iv)	15000/26–500 –	M1]	3 parts to F	-
	` '	950.9.8sin5° = 950a	A1		A0 for 900a	
		a = (-) .773 ms ⁻²	A1	3	s.c. accept 0.77	9
5	(i)	$\bar{x} = 9$	B1		ignore any working	
		c of m of Δ 4 cm above BD	B1			
					8 cm below C/see their diagram	
		$(324 + 108) (m) \overline{y} =$	M1		$432\overline{y} = 108x8 + 18^2(12 + 9)$	
		324(m)x9 + 108(m)x(18+4)		***************************************	from C left hand side	
		$432\overline{y}$	A1		1 st term on right hand side 2916	
		324×9 $(18^2 \times 9)$	A1 A1		2 nd term on right hand side 2376	
		$\begin{array}{c} 108 \times (18 + 4) \\ \overline{y} = 12.25 \end{array}$	A1	7	5292÷432 or 49/4	
	-755	$y = 12.25$ $tan\theta = 5.75/9$	-Ω' M1	 -	must be/9	1
	(ii)	$\theta = 32.6^{\circ} \text{ or } 147.4^{\circ}$	A1 √	2	1 · _	9
	1	0 = 32.0 OF 147.4	A1₹	<u> </u>	4 (4) ((10-11) (1) A (4) (1) 100	<u>Ľ</u>

T /	· · ·	T = 40 N	B1		nu lui u.su li i	5
(.1)	$T = 0.3 \times 0.2 \times 0.2$	M1		or $0.3v^2/0.2$ and $\omega = v/0.2$	
		1 = 0.5 × 0.2 × w	A1			
		$\omega = 9.04 \text{ rads}^{-1}$	A1	4		
-:		$\cos \theta = \sqrt{0.6(0.8)}$	B1		(θ=14.5°) angle to vert. or equiv.	
1	(11)	$T_{COS}A = 0.5 \times 9.8$	M1		angle consistent with diagram	
		10000 0:0 X 2:0	A1		can be their angle	l
1.		T = 5.06 N	A1	4		
-	7865 T	$T\sin\theta = 0.5 \times v^2/0.2$	M1		must be a component of 1	1
	("')		A1		$(\sin\theta = \frac{1}{4})$ can be their angle	11
		$v = 0.711 \text{ ms}^{-1}$	A1	3		11
十	(i)	vsin50°			initial vertical component	
	\''		M1		or mx9.8x13 = $\frac{1}{2}$ m(vsin50°)"	
					A Combiner MA	
		y = 20.8 ms ⁻¹		3	sin/cos mix ok for above ivi i	
ł	(ii)		1		see alternative below	
	()		A1		other methods include other is	
-		$s = v \sin 50^{\circ} x t - \frac{1}{2} x 9.8 x t^{2}$	M1		ignore ht adjustments	
			\$		can be their v and their t	
		s = -1.6 to -2.0 inclusive	A1		can be implied from next A1	
		(- 1.68)	Ì			
		ht above ground = 0.320 m		_ 6	2 0 - (45 their one to ii)	1
	(iii)	$v_{v} = v \sin 50^{\circ} - 9.8xt$	1		, <u> </u>	
		$v_{c} = -17.0 $	A1	`	√ above for v _v	
		for 22.4)			2 4 00	
		speed= $\sqrt{(v_v^2+(v\cos 50^\circ)^2)}$			or ½mv" – mgx1.68 =	13
		speed = 21.6 ms ⁻¹ √ their v	A1	_ 4	4 ½mx20.8² (4 marks) M1/A1 √ s,v /W1	13
					solve/ A1 🗸	
	785	$y = x \tan \theta - \frac{\alpha x^2}{2v^2 \cos^2 \theta}$	B1		Alternative 1 st 5 marks	
	(")	v=45tan50°-	M1		substitute v and 50° and x=45	
		9 8 45 ² /2.v ² cos ² 50°				
		0.0.10	A1		can be their v	
		calculate v	M1		100	
		y = -1.6 to -2.0 inclusive	A1		should be - 1.68	
	*	(ii) (iii) (iii)		(i) $T = 0.3 \times 0.2 \times \omega^2$ M1 A1 A1 A1 A1 $\omega = 9.04 \text{ rads}^{-1}$ (ii) $\cos \theta = \sqrt{0.6/0.8} (0.968)$ B1 M1 A1 A1 A1 A1 A1 $\cos \theta = 0.5 \times 9.8$ M1 A1 A1 A1 A1 A1 $\cot \theta = 0.5 \times v^2/0.2$ M1 A1	(i) $I = 4.5 \text{ fm}$ $I = 0.3 \times 0.2 \times \omega^2$ $\omega = 9.04 \text{ rads}^{-1}$ $O(1) = 0.5 \times 9.8$ $O(1) = 0.5 \times 9.8$ $O(1) = 0.5 \times 0.2$ $O(1) = 0.5 \times $	(i) T = 4.9 N T = 0.3 x 0.2 x ω²

8	(i)	10 = 4 + m.x	M1		conservation of momentum	
	(1)	$e = \dots$ or rationale for x	M1			
		= 2				
		m = 3	A1	3		
	(ii)	v = 6	B1			ĺ
	` ′	e = 4/5 or 0.8	M1		allow sign errors for M mark	
			<u>A1</u>	3	watch out for lost minuses	
	(iii)	10-5=2x+y (5 = -2a	M1			
		+ b)				
		(-5 = 2c + d)				
			A1		look for consistency	
		e = 0.8 = (y-x)/10	M1		TOOK TOT CONSISTENCY	
		y = x + 8 (a + b = 8) (c	A1			
		-d=8)	A1		or 1 in opp. direction to 1st	
		x = -1 (a=1) (c=1)	A1			
		y = 7 (b=7) (d=-7) $\frac{1}{2} \cdot 2.5^2 + \frac{1}{2} \cdot 1.5^2 - \frac{1}{2} \cdot 2.1^2 - \frac{1}{2} \cdot \frac{1}{2} $	M1		K.E. lost. Must be 4 parts	
•		$\frac{1}{2}$.1.7 ²	IVII		· · · · · · · · · · · · · · · · · · ·	
		12 J	A1	8	(37.5 – 25.5)	14

±1 in 3rd sig. fig. except where stated

Mark Scheme 4730 June 2006

1	(i)		M1		For using $I = \Delta$ (mv) in the direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\cos\theta = 0.4x25$	A1		
		Direction at angle 120° to original motion	A1	3	Accept $\theta = 60^{\circ}$ with θ correctly identified.
	(ii)		M1		For using $I = \Delta$ (mv) perp. to direction of the original motion (or equivalent from use of relevant vector diagram).
		$20\sin 60^{\circ} = 0.4v$	A1ft		_
		Speed is 43.3 ms ⁻¹	A1	3	
2			M1		For applying Newton's 2 nd Law.
			M1		For using $a = v(dv/dx)$.
		$2v(dv/dx) = -(2v + 3v^2)$	A1		
			M1		For separating variables and attempting to integrate.
		$2/3\ln(2 + 3v) = -x$ (+C)	A1ft		ft absence of minus sign,
		[2/3ln14 = C]	M1		For using $v(0) = 4$.
		$[2/3\ln 2 = -x + 2/3\ln 14]$	M1		For attempting to solve v(x) = 0 for x.
		Comes to rest after travelling 1.30m	A1	8	AG

3	(i)		M1		For taking moments about C for the whole structure.
		1.4R = 0.35x360 + 1.05x200	A1		O IOI BIO MILOTO GRADITA
			A1		AG
		Magnitude is 240N	M1		For taking moments about A for the rod AB.
		$0.7 \times 240 = 0.35 \times 200 + 1.05 \text{T}$	A1		
		Tension is 93.3N	A1	6	
	OR (i)		M1		For taking moments about A for AB and AC.
		$0.7R_B = 70 + 1.05T$ and $0.7R_C = 126 +$	A1		
		1.05T	M1		For eliminating T or for adding the equations, and then using $R_B + R_C = 560$.
		$0.7(560 - R_B) - 0.7R_B = 126 -$ 70 or 0.7x560 = 70 + 126 +	A1		For a correct equation in R _B only or T only
		2.1T Magnitude is 240N Tension is 93.3N	A1 A1	6	AG
	(ii)	Horizontal component is 93.3 N to the left	B1ft		
		Y = 240 - 200	M1		For resolving forces vertically.
		Vertical component is 40 N downwards	A1	3	-

4	(i)		M1		For using Newton's 2^{nd} Law perp. to string with $a = L\ddot{\theta}$.
		$L(m)\ddot{\theta} = -(m)g\sin\theta$ or $(m)\ddot{s} = -$	A1		
		(m)gsin(s/L) $\ddot{\theta} \approx -k\theta$ or \ddot{s} = -ks [and motion is therefore approx. simple	В1		
		harmonic]	M1		For using T = $2\pi/n$ and k = w^2 or T = $2\pi\sqrt{L/g}$ for
	(ii)	Period is 3.14s.	A1 M1	5	simple pendulum. AG For using $\dot{\theta}^2 = n^2(\theta_0^2 - \theta^2)$ or the principle of conservation of energy
		$\dot{\theta}^2 = 4(0.1^2 - 0.06^2)$ or $\frac{1}{2}$ m(2.45 $\dot{\theta}$) ² = 2.45mg(cos0.06 - cos0.1)	A1		gj
Transmission and the state of t		Angular speed is 0.16 rad s ⁻¹ .	A1	3	(0.1599 from energy method)
	OR	(in the case for which (iii) is attempted before (ii))			
alam y	(ii)	[$\dot{\theta}$ = -0.2sin2t] $\dot{\theta}$ = -0.2sin(2x0.464) Angular speed is 0.16 rad s ⁻¹ .	M1 A1ft A1	3	For using $\dot{\theta}$ = d(Acos nt)/dt
	(iii)	Tangara opood to o. to tad o .	M1		For using θ = Acos nt or Asin(π /2 – nt) or for using θ = Asin nt and T = $t_{0.1}$ – $t_{0.06}$
		0.06 = 0.1cos2t or 0.1sin(π /2 – 2t) or 2T = π /2 –	A1ft		ft angular displacement of 0.04 instead of 0.06
		sin ⁻¹ 0.6 Time taken is 0.464s	A1	3	

5		M1		Σ mv conserved in i direction.
	$2x12\cos 60^{\circ} - 3x8 = 2a + 3b$	A1		
	ZX12C0500 - 0x0 - 2d - 05	M1		For using NEL
	For LHS of equation below	A1		
	$0.5(12\cos 60^{\circ} + 8) = b - a$	A1		Complete equation with signs of a and b consistent with previous equation.
		M1		For eliminating a or b.
	Speed of B is 0.4ms ⁻¹ in i direction	A1		
	a = -6.6	A1		
	Component of A's velocity in j direction is	B1		May be shown on diagram or implied in subsequent work.
	12sin60°	B1ft		WOIK.
	Speed of A is 12.3ms ⁻¹	M1		For using $\theta = \tan^{-1}(\text{jcomp}/\pm \text{i comp})$
	Direction is at 122.4° to the i	A1ft	1 2	Accept θ = 57.6° with θ correctly identified.
	direction	B1		
6 (i)	T = 1470x/30 [49x = 70x9.8]	M1		For using T = mg
	x = 14	A1		-
•	Distance fallen is 44m	A1ft	4	
	PE loss = 70g(30 + 14)	B1ft		
(ii)	EE gain = $1470x14^2/(2x30)$	B1ft		
	$[\frac{1}{2} 70v^2 = 30184 - 4802]$	M1	-	For a linear equation with terms representing KE, PE and EE changes.
	Speed is 26.9ms ⁻¹	A1	4	AG
OR	******			- and the ond the conditions
(ii)	$[0.5 \text{ v}^2 = 14\text{g} - 68.6 + 30\text{g}]$	M1		For using Newton's 2^{nd} law $(vdv/dx = g - 0.7x)$, integrating $(0.5 v^2 = gx - 0.35x^2 + k)$, using $v(0)^2 = 60g \rightarrow k = 30g$, and substituting $x = 14$.
	For 14g + 30g	B1ft		Accept in unsimplified form
	For ∓68.6	B1ft	Λ	
	Speed is 26.9ms ⁻¹	A1 B1ft	4	ΑΟ
(iii)	PE loss = $70g(30 + x)$	B1ft		
	EE gain = $1470x^2/(2x30)$ [$x^2 - 28x - 840 = 0$]	M1		For using PE loss = KE
	$[x^2 - 28x - 840 - 0]$	144 1		gain to obtain a 3 term quadratic equation.
	Extension is 46.2m	A1	4	•
OR	*****	~~~~~~~		
(iii)		M1		For identifying SHM with n ² =
				1470/(70x30)
		M1-		For using $v_{max} = An$
	$A = 26.9 / \sqrt{0.7}$	A1		
	Extension is 46.2m	A1	4	
	LAGROUTIO TOLLIT			

7 (i)	$\frac{1}{2} 0.3 v^2 + \frac{1}{2} 0.4 v^2$	B1		
	\pm 0.3g(0.6sin $ heta$)	B1		e de la constante de la consta
	\pm 0.4g(0.6 $ heta$)	B1		
	$[0.35v^2 = 2.352\theta - 1.764\sin\theta]$	M1		For using the principle of
	•			conservation of energy.
	$v^2 = 6.72\theta - 5.04\sin\theta$	A1	5	AG
(ii)		M1		For applying Newton's 2^{nd} Law radially to P and using $a = v^2/r$
	$0.3(v^2/0.6) = 0.3g\sin\theta - R$	A1		
	$[\frac{1}{2}(6.72\theta - 5.04\sin\theta)] =$	M1		For substituting for v ² .
	[72 (0.720 - 3.043110)	****		-
	0.3 gsin θ - R]			
	Magnitude is $(5.46\sin\theta -$	A1		AG
	3.36 θ)N			
	$[5.46\cos\theta - 3.36 = 0]$	M1		For using dR/d θ = 0
	Value of θ is 0.908	A1	6	
	$[T - 0.3g\cos\theta = 0.3a]$	M1		For applying Newton's 2 nd
(iii)	[1 = 0.3gcos \(\text{\$\titt{\$\text{\$\tinx{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{	,,,,		Law tangentially to P
	[0.4g - T = 0.4a]	M1		For applying Newton's 2 nd
	[0.4g , 0.12]			Law to Q
				[If $0.4g - 0.3g\cos\theta = 0.3a$
				is seen, assume this
				derives from
				$T - 0.3g\cos\theta = 0.3a \dots$
				M1
				and T = 0.4g M0]
	Component is $5.6 - 4.2\cos\theta$	A1	3	
OR				
(iii)	$0.4g - 0.3g\cos\theta = (0.3 + 0.4)a$	B2		
	Component is $5.6 - 4.2\cos\theta$	B1	3	
OR				Per
(iii)	$[2v(dv/d\theta) = 6.72 - 5.04\cos\theta]$	M1		For differentiating v^2 (from (i)) w.r.t. θ
	$2(0.6a) = 6.72 - 5.04\cos\theta$	M1		For using $v(dv/d\theta) = ar$
	Component is $5.6 - 4.2\cos\theta$	A1	3	-
	Component is 0.0 4.20000			

Mark Scheme 4731 June 2006

$\int x \rho dx = \int_0^a k(a+2x)x dx$ M1 for $\int(a+2x)x dx$	
$= k \left[\frac{1}{2} a x^2 + \frac{2}{3} x^3 \right]_0^a \left(= \frac{7}{6} k a^3 \right)$ A1	
$\int \rho \mathrm{d}x = k \int_0^a (a+2x) \mathrm{d}x = k \left[ax + x^2 \right]_0^a \qquad \qquad \text{B1} \qquad \qquad \left[\text{for } \dots \left[ax + x^2 \right]_0^a \right]$	
$=2ka^2$	
$\bar{x} = \frac{\frac{7}{6}ka^3}{2ka^2}$ M1 Dependent on first	t M1
$= \frac{7}{12}a$ Accept 0.583a	
5	
2 (i) $I = \frac{1}{2} \times 8 \times 0.15^2$ (= 0.09 kg m ²) B1	
Using $\omega_2^2 = \omega_1^2 + 2\alpha\theta$	- Constitution of the Cons
$25^2 = 10^2 + 2\alpha \times 75$ M1A1	
$\alpha = 3.5 \text{rad s}^{-2}$	
Couple is $I\alpha = 0.09 \times 3.5$	1
= 0.315 N m A1 ft ft from wrong / ar requires M1M1	nd / or α , but π
OR Increase in KE is $\frac{1}{2} \times 0.09 \times (25^2 - 10^2)$	
M1A1 ft	
= 23.625 J WD by couple is	L×75
It requires WillVII	
Couple is $\frac{23.625}{75} = 0.315 \text{ Nm}$ A1 ft	<u></u>
By conservation of angular momentum $(0.09 + I_2) \times 9 = 0.09 \times 25$ M1 A1 ft Using angular momentum	omentum
$I_2 = 0.16 \mathrm{kg} \mathrm{m}^2$ A1	

3	3	$\int_{1}^{2} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{1}^{2}$	<i>/</i> 11	
		1	\1	
		Mass per unit area $\rho = 48 \text{ kg m}^{-2}$	31	
		$I = \int \frac{4}{3} (\rho y \delta x) \left(\frac{1}{2} y\right)^2$	V 11	For integral of y^3
		(1 3)	A1	
		$\int_{-\infty}^{2} 1$	A1 ft	
		L. 21	A1	For correct integration of $\frac{1}{x^6}$
		$= \frac{31}{480} \rho = \frac{31}{480} \times 48$		
		$=3.1 \mathrm{kg} \mathrm{m}^2$	A1 8	3
-	4 (i)	$RC = 2a\cos\theta$	B1	or $RC^2 = 2a^2 + 2a^2 \cos 2\theta$
	4 (1)		M1	
		$2a$ $GPE = mga \sin 2\theta + 2mg(2a \sin 2\theta)$	M1	One term sufficient for M1
		$V = 10 mga \cos^2 \theta + 5 mga \sin 2\theta$	A1	
		$\frac{\mathrm{d}V}{\mathrm{d}\theta} = -20mga\cos\theta\sin\theta + 10mga\cos2\theta$	B1	Correct differentiation of $\cos^2 \theta$
		$= -10 mga \sin 2\theta + 10 mga \cos 2\theta$		(or $\cos 2\theta$) and $\sin 2\theta$
		For equilibrium, $10mga(\cos 2\theta - \sin 2\theta) = 0$ $\tan 2\theta = 1$	M1	For using $\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$
		$\theta = \frac{1}{8}\pi$	A1	Accept 22½°, 0.393
	(ii)	121/		
	(11)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = -20 mga \cos 2\theta - 20 mga \sin 2\theta$	B1 ft	
		When $\theta = \frac{1}{8}\pi$, $\frac{d^2V}{d\theta^2} (= -20\sqrt{2} mga) < 0$	M1	Determining the sign of V''
		Hence the equilibrium is unstable	A1	Correctly shown
	The state of the s	OR Other method for determining whether <i>V</i> has a maximum or a minimum M1 Correct determination A1 fi Equilibrium is unstable A1	t	Correctly shown

5 (i)	$I = \frac{1}{3}(20)(0.3^2 + 0.9^2) + 20 \times 0.9^2$ = 22.2 kg m ²	M1 M1 A1 (ag) 3	MI of lamina about any axis Use of parallel (or perp) axes rule Correctly obtained
	OR $I = \frac{1}{3} \times 20 \times 0.3^2 + \frac{4}{3} \times 20 \times 0.9^2$ M1M1 = 22.2 kg m ² A1		As above
(ii)	Total moment is $20 \times 9.8 \times 0.9 \cos \theta - 44.1$ Angular acceleration is zero when moment is zero $\cos \theta = \frac{44.1}{20 \times 9.8 \times 0.9} = 0.25$	M1 M1 A1 (ag) 3	
(iii)	Maximum angular speed when $\cos\theta = 0.25$ $\theta = 1.318$ Work done against couple is 44.1×1.318 By work energy principle, $\frac{1}{2}I\omega^2 = 20 \times 9.8 \times 0.9 \sin\theta - 44.1\theta$ $\omega = 3.19 \mathrm{rad} \mathrm{s}^{-1}$	M1 A1 M1 A1 ft A1	Equation involving work, KE and PE

	A :		T	
	As viewed from P			
	Q TWCO THEOD TO		***************************************	
	$\sin \alpha = \frac{7400}{7400}$ $\alpha = 14.0^{\circ}$	M1 A1 (ag)		
	or $50 + \alpha = 064^{\circ}$	B1 ft	3	For 64 or ft 50 + α
(ii)	Velocity diagram			
A STATE OF THE STA	Z 70° 36° 1 eVp	B1		Correct diagram (may be implied)
	$\frac{\sin \beta}{7} = \frac{\sin 106}{10}$ $\beta = 42.3^{\circ}$ Bearing of \mathbf{v}_Q is $36 + \beta = 078.3^{\circ}$	M1 A1 A1	4	Correct triangle must be intended Accept 78°
(iii)	$\frac{w}{\sin 31.7} = \frac{10}{\sin 106}$ $w = 5.47 \text{ m s}^{-1}$	M1 A1	2	If cosine rule is used, M1 also requires an attempt at solving the quadratic
	Alternative for (ii) and (iii) $ \begin{pmatrix} w \sin 36 \\ w \cos 36 \end{pmatrix} = $			e.g. $10\sin\theta - 7.2654\cos\theta = 8.3173$ or A1A1 if another angle found first

Mark Scheme

June 2006

(iv)	$QC = \sqrt{7400^2 - 1790^2} = 7180 \text{ m}$ Time taken is $\frac{7180}{5.468}$ = 1310 s	M1 meth findir For a	12 for other complete od for ng the time) attempt at relative distance of awarded for 7400 ÷ w 1.9 minutes ft is 7180 ÷ w
(v)	Bearing of <i>CP</i> is 90 + 36 = 126°	B1 1	

(i)	$I = \frac{1}{3}m(3a)^2 + m(2a)^2$	M	1		Using parallel axes rule
"	$=7ma^{2}$	Α	1	.	
	$mg(2a\sin\theta) = I\alpha$	N	11		
	$\alpha = \frac{2g\sin\theta}{7a}$	A	1		
	7a			4	
(ii)	By conservation of energy	1	11 .1		Equation involving KE and PE Need to see how $\frac{1}{3}\pi$ is used
	$\frac{1}{2}I\omega^2 = mg(2a\cos\frac{1}{3}\pi - 2a\cos\theta)$	1	\ i		Nood to ood how 3
	$\frac{7}{2}ma^2\omega^2 = mga(1-2\cos\theta)$				
	$\omega = \sqrt{\frac{2g(1 - 2\cos\theta)}{7a}}$	P	\1 (ag)	3	Correctly obtained
					For radial acceleration $r\omega^2$
(iii)	$mg\cos\theta - R = m(2a\omega^2)$	1	\1 \1		7 of fadial according to
	$R = mg\cos\theta - \frac{4}{7}mg(1 - 2\cos\theta)$				
	$=\frac{1}{7}mg(15\cos\theta-4)$		A1		
			VI1		For transverse acceleration $r\alpha$
	$mg\sin\theta - S = m(2a\alpha)$	1	41		
	$S = mg\sin\theta - \frac{4}{7}mg\sin\theta$		۸.4		
	$=\frac{3}{7}mg\sin\theta$		A1	6	
	OR $S(2a) = I_G \alpha = (3ma^2)\alpha$ M1	Α1		~	Must use I_G
	$S = \frac{3}{7} mg \sin \theta$	A1			
(iv)	When $\cos \theta = \frac{1}{3}$, $\sin \theta = \frac{\sqrt{8}}{3}$, $\tan \theta = \sqrt{8}$				
	$R = \frac{1}{7}mg \; , \; S = \frac{\sqrt{8}}{7}mg$		M1		
	Angle with R is $\tan^{-1} \frac{S}{R} = \tan^{-1} \sqrt{8} = \theta$				
	so the resultant force is vertical		A1		
	Magnitude is $\sqrt{R^2 + S^2}$		M1		
	$= \frac{1}{7} mg \sqrt{1+8} = \frac{3}{7} mg$		A1		
					4
	OR When resultant force is F vertically				
	upwards $S = F \sin \theta, \text{ hence } F = \frac{3}{7} mg$ M1	IA1			
	$R = F \cos \theta$, SO				
	$\frac{1}{7}mg(15\cos\theta-4)=\frac{3}{7}mg\cos\theta$	M1			
	$\cos\theta = \frac{1}{3}$	A1			
	OR Horizontal force is $R \sin \theta - S \cos \theta$ = $\frac{1}{7} mg (15 \cos \theta - 4) \sin \theta - \frac{3}{7} mg \sin \theta \cos \theta$	М1			
	$=\frac{1}{7}mg\sin\theta(12\cos\theta-4)$				
	$= 0$ when $\cos \theta = \frac{1}{3}$	A1			

Mark Scheme

June 2006

Vertical force is $R\cos\theta + S\sin\theta$ = $\frac{1}{7}mg \times \frac{1}{3} + \frac{3}{7}mg \times \frac{8}{9} = \frac{3}{7}mg$	M1A1	

Mark Scheme 4732 June 2006

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise 2 sfs only once in paper.

enalise 2	sfs only once in paper.			
(i)	Negative, because (grad or coeff of x in 1"			Neg because x incr & y decr
	equn or x-value or reg coeff or B or -0.6) is			
	negative	B1	1	
		M1		Sub $y=7.0$ in 2^{nd} eqn. Allow 1 sign error
ii)	$x = -1.6 \times 7.0 + 21$	IVII		If sub in both must choose 2nd
ĺ	x = 9.8	A1	2	Troub in John Hamber
		A1	-	
	y = -0.6(-1.6y + 21) + 13 or similar	MI		Obtain correct eqn in 1 variable.
iii)	y = -0.6(-1.6y + 21) + 15 of shifted	1		Allow 1 num'l error
	$\overline{x} = 5$, $\overline{y} = 10$	AIAI	3	Allow without bars
	x = 3, y = 10	6		
[Total]	In qus 2 & 3 "prod" mean	s "product	of ty	wo probabilities"
	in qus 2 & 5 prod mean	B1	1	
2(i)	⁴ / ₇ or 0.571 (3 sfs)	D1	•	
· · · · ·	$\frac{5}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{8}$	MIMI		M1: one correct prod or add any two prods
(ii)	/8 X /7 T /8 A /8			M1: all correct
	$= \frac{265}{448}$ or 0.592 (3 sfs)	A1	3	
	7448 07 0002 = (0 0002)			
(iii)	$\frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{7}$	MIMI		M1: one correct prod or add any two prods
(111)				M1: all correct
	= ²²⁵ / ₄₄₈ or 0.502 (3 sfs)	A1	3	
Total		7		
		NAINAI		M1: 7!/(a factorial); or ÷ (3! x 2(!))
3(i)	7!	MIMI		M1: all correct
	3! x 2(!)	A1	3	1
	= 420	Ai	J	
·				M1: 5! seen (not part of a C) or 5 x 4!
(ii)	51	****		or 120 seen or $ \div 2(!)$ alone
	2(!) = 60	A1	2	
(iii)	$1 - \frac{4}{7} \times \frac{3}{6}$ or $1 - \frac{4}{5} + \frac{2}{7} + \frac{7}{5} + \frac{2}{3} + \frac{4}{3} + \frac{3}{3} + 3$	MIMI		M1:1- prod or 1/C ₂ or 1-4C ₂ / (or F
(1117)	or ${}^{3}/_{7} \times {}^{2}/_{6} + {}^{3}/_{7} \times {}^{4}/_{6} + {}^{4}/_{7} \times {}^{3}/_{6}$ oe or ${}^{3}C_{2} / {}^{7}C_{2} + {}^{3}C_{1} \times {}^{4}C_{1} / {}^{7}C_{2}$			or add 3 prods or add 2 correct prod
	or ${}^{3}C_{2} / {}^{7}C_{2} + {}^{3}C_{1}x^{4}C_{1} / {}^{7}C_{2}$			or ${}^{3}C_{2} / {}^{7}C_{2}$ or ${}^{3}C_{1}x^{4}C_{1} / {}^{7}C_{2}$
				or add ≥ 5 out of 7 correct prods
				M1: all correct
		1	,	2
	$= \frac{5}{7}$ or 0.714 (3 sfs)	A1 8		3
Total	1	1 8		

			B1	T	or 1 – 0.6167 or 0.3833 (3 sfs)
4(i)	i) 0.4207 or 0.421 (3 sfs) or $0.8^{25} + 25 \times 0.8^{24} \times 0.2 +^{25} C_4 \times 0.4^{21} \times 0.2^4$ 0.579(3)		DI		or 1- (6 correct terms, 0 to 5)
			BI	2	or 1= (o contect terms, s to s)
				-	
(ii)	10 C ₃ x $(1-0.27)^7$ x 0.27^3		M1		
(11)	= 0.261 (3 sfs)		A1	2	
					or $1 - {}^{n}C_{0} \times 0.27^{0} \times 0.73^{n} > 0.95$ oe
(iii)		Allow "=" thro'out			allow incorrect sign M1
		$1 - 0.73^n > 0.95$			must be correct
	$0.73^9 = 0.059$	or 0.73" < 0.05	M1		ft ($1 - 0.27$) from (ii) for M1M1
	$0.73^{10} = 0.043$	$n\log 0.73 < \log 0.05$ oe	M1		10 with incorrect sign in wking: SCB2
					10 with just $0.73^9 = 0.059$: M1M1A1
					10 With Just 0115
	n = 10		$\frac{A1}{7}$	3	
Total		1	$\frac{+}{B1}$		
5(i)	1/3 + 1/4 + p + q = 1 oe $0 \times 1/3 + 1 \times 1/4 + 2p + 3q = 11/4$ oe		B1		
	$0 \times 7_3 + 1 \times 7_4 $	12,			
	equalize coeffs,	M1		allow one error. ft their equns	
	Or make n or a			subst or subtr not nec'y	
	Or make p or q subject of (i) or (ii) $p = \frac{1}{4}, q = \frac{1}{6} \text{ oe}$		A1A1	5	
(ii)	$\sum x^2 p \text{ (not } /4 \text{ or } /3 \text{ etc)} \qquad (= 2^{3}/4)$ $- (1^{1}/4)^2$		Ml		≥ 2 non-zero terms correct. dep +ve result
(**)			M1		indep if +ve result
1					or $\Box x-1^{1/4})^2p$
					(> 2 (non-0) terms correct): M2
					ft (i) $(0 \le p, q \le 1)$ or letters p, q both M1s
	$= 1.1875$ or 1^3		A1		cao dep 1st M1 & $\sqrt{\text{(+ve no.)}}$ eg $\sqrt{2.75} = 1.66$
	$\int sd = \sqrt{(their 1.18)}$	375) = 1.09 (3 sfs)	B1f	4	$\frac{\text{dep 1st M1 &}\sqrt{(+\text{ve no.})} \text{eg }\sqrt{2.75} = 1.66}{}$
Total			9		<u> </u>

Total		10	
			not referring to "corr'n" rather than r allow "neg", not neg corr'n or neg skew
(b)	Close to -1 or, eg ≈ -0.9	B1	cao
(ii)(a)	=-1	B1	1 indep
(c)	Unchanged. No change in rank	B1B1	not "strong disagreement" Ignore other comment
(b)	Little (or no) connection (agreement, rel'nship) between dist and commission Allow disagreement	Blft	No mks unless $ r_s \le 1$ ft their r_s Must refer to context. Not "little corr'n between dist and com"
	$= -\frac{1}{14}$ or -0.071 (3 dps)	A1	calc r for ranks: $S_{xx}=S_{yy}=140-28^2/7$. $S_{xy}=110-28^2/7$ (= 28) (= -2) corr subst in one corr S (any version):M1 corr subst in $r=S_{xy}/\sqrt{(S_{xx}S_{yy})}$:M1 -0.07 without wking: M1A1M2A0
	$(=60) r_s = 1 - \frac{6 \times 60}{7 \times 48}$	M1	Correct formula with $n = 7$, dep 2^{nd} M1
	$\sum d^2$	MI	dep ranks attempted even if opp orders, allow arith errors
6(i)(a)	Ranks: 2 4 7 5 3 1 6 6 4 1 3 5 7 2 7 1 6 3 2 5 4 1 7 2 5 6 3 4	MI A1	≥ 5 ranks correct in each set all correct

7(i)		7		Correct (149.5)	With 150	Tot=	
(1)	Midpoints attempted ≥ 2 classes	M1		<u>Contoct (142.5)</u>	WIGHT 150	2000	
	$\sum xf/100 \text{ or } \sum xf/\sum f \text{ attempted } \geq 2 \text{ terms}$	M1				2000	
	x within class, not class width $Mean = 27.2 (to 3 sfs) (not 27.25)$			0500 5/100	05051100		
				2720.5/100	2725/100	Allow	
	art 27.2 from fully correct wking	A1				Ms	
		1 1 1					
	$\sum x^2 f \text{or} \sum x - \overline{x})^2 f \geq 2 \text{ terms}$ $\sqrt{(\sum x^2 f / 100 - \overline{x}^2)} \text{or} \sqrt{((\sum x - \overline{x})^2 f / 100)} \text{or}$	MI				& poss	
	$\sqrt{(\sum_{r} r^2 f/100 - \overline{r}^2)}$ or $\sqrt{(\sum_{r} \overline{r})^2 f/100}$ or	****				As	
	$ \nabla(\sum_{i}f_{i}) ^{1/2}$	3.61					
	fully corr method, not √neg	M1		27.2	27.25		
	rany von momoa, not ynog	A1	6	240702.25	242050		
	= 40.5 to 41.1 (3 sfs)	AI	v	40.82	40.96		
	10.5 to 1111 (0 0.5)					nlv	
(ii)	Recog LQ in 1 st class & UQ in 3 rd class	Bi	• • • • • • • • • •	allow class widths for 2nd M1 only			
(11)	recog by mr case by example and						
	Graph: Interp:	·					
	Attempt 25(.25) th value $LQ = 3.0 \text{ to } 4.3$						
	Attempt $75(.75)^{th}$ value UQ =27 to 29	M1		both nec'y			
	Subtract	MI		dep Blor M1			
	IQR = 23 or 24 or 25	A1	4	integer. dep M2			
(iii)(a)	Increase	B1	1			**	
(b)	Increase	BI	1	Ignore "	probably" etc	·	
(c)	No change	B1	1	1 ***			
Total			13				
	,	B1					
8(i)	Geometric.			Y			
	Each attempt (or result or try) indep		2	In context. Not "events, trials, outcomes". Ignore extra			
de la constanta de la constant		ľ					
	,	M2			» »,» » » » » » » » » » » » » » » » » »		
(ii)(a)	$(^{2}/_{3})^{3} \times ^{1}/_{3}$			$(^{2}/_{3})^{2}x^{1}/_{3}$ or $(^{2}/_{3})^{4}x^{1}/_{3}$:			
				allow other numerical " p " (0< p <1):M1			
	$= \frac{8}{81}$ or 0.0988 (3 sfs)	A1	3				
	21.53	MI		, ,2,,3			
(b)	$\binom{2}{3}^3$			$\cot (^{2}/_{3})^{3} \times$	/ \21/	1.60	
	$(1-(^2/_3)^3)$	M1		or $\frac{1}{3} + \frac{2}{3}x^{\frac{1}{3}} + \frac{2}{3}x^{\frac{1}{$	/3 <i>)</i> "X"/3 5~*>\ ⁴	M2	
				$1 - (^2/_3)^4$ or $1 - (^4$		M1	
				or 3 terms, with 2 or 3 correct terms		M1	
				or "p" + "qp" + " q		M1 M1	
	$= \frac{19}{27}$ or 0.704 (3sfs)					M1	
			3	or 1 – sum of 3 correct terms M1 "p" means num value, not 1/3			
	727 01 01.70 1 (3010)			p mount num ratus, i		40, HUL /3	
(iii)	3	Blf	1	or $^{\mathfrak{l}}/_{r_{p''}}$	************	*******	
	7.7.7.10.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	 			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
(iv)	$ \begin{array}{c c} 1 - {}^{19}/_{27} & (1 - 0.7037) \text{ or } 0.2963 \\ ({}^{8}/_{27})^2 \times {}^{19}/_{27} & 0.2963^2 \times 0.7037 \end{array} $	MI		ft (b) for MIMI n			
	$(\%_{27})^2 \times (\%_{27})^2 = 0.2963^2 \times 0.7037$	M1		Allow figs rounde	ed to 2 sfs for N	имі	
	12167	١	_	11 11 10 0	C10 00C1=		
***************************************	$= \frac{1216}{19683}$ = 0.0618 (3 sfs)	Al	3	cao. allow art 0.06	618 or 0.0617		
Total			12		<u></u>		
, ,							

Total 72 marks

Mark Scheme 4733 June 2006

		F . 74	M1		Integrate xf(x), limits 3 & 4 [can be implied]
1		$\mu = \frac{3}{37} \int_3^4 x^3 dx = \frac{3}{37} \left[\frac{x^4}{4} \right]_3^4 $ [=	# V 1 1		
		3/ J3 3/ [4]3			$\left[\frac{525}{148} \text{ or } 3.547\right]$
		3 81 1	M1		Attempt to integrate $x^2 f(x)$, limits 3 & 4
			A1		Correct indefinite integral, any form
		$\frac{3}{37} \int_3^4 x^4 dx = \frac{3}{37} \left[\frac{x^5}{5} \right]_3^4$	A1		$\frac{2343}{185}$ or in range [12.6, 12.7] [can be implied]
		the state of the s	M1		Subtract their μ^2
		$= 12\frac{123}{185}$ or 12.665	A1	6	Answer, in range [0.0575, 0.084]
		$\sigma^2 = 12\frac{123}{185} - 3\frac{81}{148}^2 = 0.0815$			- "
2	(i)	Find $P(R \ge 6)$ or $P(R < 6)$	M1		Find P(= 6) from tables/calc, OR RH critical
	\ \ \ \	= 0.0083 or 0.9917	A1		region
					P(≥ 6) in range [0.008, 0.0083] or P(< 6) =
		Compare with 0.025 [can be from	B1		0.9917
		N]		4	OR CR is 6 with probability
		[0.05 if "empty LH tail	A1√		0.0083/0.9917 Explicitly compare with 0.035 for 0.075 if
		stated]			Explicitly compare with 0.025 [or 0.975 if consistent]
		Reject H ₀			OR state that result is in critical region
					Correct comparison and conclusion, $$ on their p
	(ii)	$n = 9$, $P(\le 1) = 0.0385$ [> 0.025]	M1		At least one, or $n = 8$, $P(\le 1) = 0.0632$
	(")	$n = 9$, $P(\le 1) = 0.0003$ [> 0.023] $n = 10$, $P(\le 1) = 0.0233$ [< 0.025]	A1		Both of these probabilities seen, don't need
	1	Therefore $n = 9$	B1	3	0.025
		Therefore is			Answer $n = 9$ only, indep't of M1A1, not from P(=
					1)
3	(i)	$(140 - \mu)/\sigma = -2.326$	M1		One standardisation equated to Φ^{-1} , allow "1–",
		$(300 - \mu)/\sigma = 0.842$	B1		σ^2
			A1√		Both 2.33 and 0.84 at least, ignore signs
		Solve to obtain:	M1 A1		Both equations completely correct, √ on their z
		$\mu = 257.49$	A1	6	Solve two simultaneous equations to find one variable
		σ = 50.51	' ' '	O	ναπαρίε μ value, in range [257, 258]
					σ in range [50.4, 50.55]
		Higher	B1		"Higher" or equivalent stated
	(ii)	as there is positive skew	B1	2	Plausible reason, allow from normal calculations
4	(i)	Each element equally likely to be	B1	1	One of these two. "Selections independent"
-	"	selected (and all selections			alone is insufficient, but don't need this. An
		independent) OR each possible			example is insufficient.
		sample equally likely			
[(ii)	B(6, 5/8)	M1		B(6, 5/8) stated or implied, allow e.g. 499/799
		${}^{6}C_{4}p^{4}(1-p)^{2}$	M1	•	Correct formula, any <i>p</i> Answer, a.r.t. 0.322, can allow from wrong <i>p</i>
	J,	= 0.32187	A1√ B1	. 3	Normal, mean 37.5, or 37.47 from 499/799,
	(iii)	N(37.5, 225/16)	B1		499/800
		$\frac{39.5 - 37.5}{39.5 - 37.5} = 0.5333$	M1 de	n	14.0625 or 3.75 seen, allow 14.07/14.1 or 3.75
		3.75	A1	۳	Standardise, wrong or no cc, np , npq , no \sqrt{n}
		1 – Φ(0.5333)	dep M	1	Correct cc. \sqrt{npq} , signs can be reversed
		= 0.297	A1		Tables used, answer < 0.5 , $p = 5/8$
		V.mV!	6		Answer, a.r.t. 0.297
					SR: $np < 5$: Po(np) stated or implied,
1					B1

5	(i) (ii)	B(303, 0.01) $\approx Po(3.03)$ $e^{-3.03} (1 + 3.03 + \frac{3.03^{2}}{2}) = 0.4165$ AG	M1	B(303, 0.01) stated, allow $p = 0.99$ or 0.1 Allow Bin implied clearly by parameters Po(3.03) stated or implied, can be recovered from (ii) Correct formula, \pm 1 term or "1 - " or both Convincingly obtain 0.4165(02542) [Exact: 0.41535]
	SR: SR:	$302 \text{ seats} \Rightarrow \mu = 3.02$ $e^{-3.02} (1 + 3.02) = 0.1962$ 0.196 < 0.2 So 302 seats. B(303, 0.99): B1B0; M0; M1 then N($p = 0.1$: B(303, 0.1), N(30.3) N(0.1 $p = 0.09p$); standardise with	M1 M1 A1 A1 A1 298.98,2. 27.27) B	Try smaller value of μ Formula, at least one correct term Correct number of terms for their μ 0.1962 [or 0.1947 from exact] 5 Answer 302 only 9898) or equiv, standardise: M1A1 total 4/9 1B0; Standardise 2 with np & √npq, M1A0; oq; solve quadratic for √n; n = 339: M1M1M1A1, total
6	SR:	6/9 B(303, 0.01) \approx N(3.03, 2.9997): B1l Customers arrive independently 1 - 0.9921 = 0.0079 N(48, 48) $z = \frac{55.5 - 48}{\sqrt{48}}$ = 1.0825 $1 - \Phi(1.0825)$ = 0.1394 $e^{-\lambda} < 0.02$ $\lambda > -\ln 0.02$	B0; M0A0 B1 M1	 (M1A0) Valid reason in context, allow "random" Poisson tables, "1 –", or correct formula ± 1 term Answer, a.r.t. 0.008 [1 – 0.9384 = 0.0606: M1A0] Normal, mean 48 Variance or SD same as mean√ Standardise, wrong or no cc, μ = λ Correct cc, √λ Use tables, answer < 0.5 Answer in range [0.139, 0.14] Correct formula for P(0), OR P(0 λ = 4) at least In used OR λ = 3.9 at least by T & I 2 01(2) seep OR λ = 3.91 at least by T & I
TANKS TO THE STATE OF THE STATE	***************************************	= 3.912 0.4 <i>t</i> = 3.912:	A1 M1 A1	 3.91(2) seen OR λ = 3.91 at least by 1 d 1 Divide λ by 0.4 or multiply by 150, any distribution 587 seconds ± 1 sec [inequalities not needed]

7	(i)	$\frac{c - 4000}{60 / \sqrt{50}} = 1.645$ Solve $c = 4014$ [4013.958] Critical region is > 4014	M1 B1 A1√ M1 A1 A1√ 6	Standardise unknown with $\sqrt{50}$ or 50 [ignore RHS] $z = 1.645$ or -1.645 seen Wholly correct eqn, $$ on their $z = 1.645$: M1B1A0] Solve to find c Value of c , a.r.t. 4014 Answer "> 4014", allow \geq , $$ on their c , needs M1M1
	(ii)	Use "Type II is: accept when H_0 false" $\frac{4020 - 4014}{60 / \sqrt{50}} = 0.7071 \qquad [0.712 \text{ from} \\ 4013.958] \\ 1 - \Phi(0.7071) \\ = 0.240 \qquad [0.238 \text{ from}]$	M1dep depM1 A1√ A1 M1 A1 6	
	(iii)	4013.958] Smaller Smaller cv, better test etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
	(iv)	Smaller Smaller cv, larger prob of Type I etc	B1 B1 2	"Smaller" stated, no invalidating reason Plausible reason
	(v)	No, parent distribution known to be normal	B2 2	"No" stated, convincing reason SR: If B0, "No", reason that is not invalidating: B1

Mark Scheme 4734 June 2006

1		Add two Poisson distributions With mean 17 $P(27)=e^{-17}17^{27}/27!$ or $P(\le 27)-P(\le 26)$ 0.00634 or 0.0063, 0.0064 from tables	M1 A1 M1 A1	4		formula or table 1 0.0052 from N(17,17)
2		$H_0:p_1=p_2=p_3=p_4$, ($H_1:$ They are not all equal) Expected values under $H_0=150$	B1 B1		Indica	ation of equality of proportions
		χ^2 = $(12^2+23^2+15^2+20^2)/150$ =8.653 Critical value with 3 d.f. = 7.815	M1 B1	A1	At lea	ast one correct term Accept art 8.65 or 8.66
		($X^2 > 7.185$ so) reject H ₀ and accept to proportions are different.	nat	B1√	6	ft critical value
3		Assume population of differences has distribution.		l	F=="1.45	
		or sample random H ₀ : μ _B - μ _A =0, H ₁ : μ _B - μ _A > 0 t=(23.43-22.84)/ √(0.548/10) =2.520	B1 B1 M1	A1	AEF	er assumption.
	1.812,	CV=1.833 2.52 > CV so reject H _o	B1 M1	,,,	See Alio	n w from CV 2.262 (2-tail),
	1.012.	Accept that there is evidence that mean has reduced.	an time A1 √	7	ft wr	rong CV
4	(i)	EITHER: $\int_{q_3}^4 \frac{1}{12} x dx = \frac{1}{4}$ or $\int_1^2 \frac{4}{3x^3} dx$	$x + \int_{2}^{y_3} \frac{1}{1!}$	-xdx =	$\frac{3}{4}$ M	11*
		[$x^2/24$] OR [$-2/(3x^2] + [x^2/24]$ ($16-q_3^2$)/24=1/4 or 1/3 + q_3^2 / 24 = $\frac{3}{4}$ $q_3 = \sqrt{10}$ If they find F(x): M1A1, M1A1	A1 dep *N A1	11 4	Eithe Fori Acc	er m equation and attempt to solve ept to 3 SF
	(ii)	$E(X^{2}) = \int_{1}^{2} \frac{4}{3x} dx + \int_{2}^{4} \frac{x^{3}}{12} dx$				
		$E(X) = \int_{1}^{2} \frac{4}{3x^{2}} dx + \int_{2}^{4} \frac{x^{2}}{12} dx$	M1		Eith	ner correct
		$\left[\frac{4}{3}\ln x\right]_1^2 + \left[\frac{x^4}{48}\right]_2^4$	A1			
		$\left[\frac{-4}{3x}\right]_1^2 + \left[\frac{x^3}{36}\right]_2^4$	A1			
		$a = E(X^2)/E(X)$ a = 2.6659, 2.67	M1 A1	5	Or	exact value, (3ln2)/5 + 9/4 or equiv

4734		Mark Sch	ieme			June 2006
5	(i)	(48×72/150) or (48/150)(72/150)×150	M1 A1	2		ply and divide relevant values orrect
	(ii)	No, no expected value less than 5		B1	1	
W W W W W W W W W	(iii)	H₀:Volume and day are independent (H₁:Volume and day are not independent Critical value for 4 df=13.28 Test statistic > 13.28, reject H₀	lent) B1 M1	B1	Attrik	outes specified
		Accept that volume and day are not independent	A1	4		
us an us ne ne les les re-/	(iv)	Choose Friday Highest volume	B1	B1	2	Not reference to E values
 6	(i)	(a) No 0.43 belongs to relevant interval (b)Yes	B1	B1	Mus	t be with reason
		0.43 is outside relevant interval	В1	3		
90 M NA 404 404 404 104 4	(ii)	$H_0: p_R = p_{T_1} H_1: p_R \neq p_T$ Estimate of $p = 74/165$ Variance estimate of difference	B1 B1		Prop	portions
		$=(\frac{74}{165})(\frac{91}{165})(\frac{1}{80}+\frac{1}{85})$	B1		May	be implied by later work
		z=(28/80-46/85)/ $\sigma_{\rm est}$	M1 A1	A 1		ndardising upletely correct expression upletely correct expression
		= -2.468 Compare correctly with CV -2.468<-2.326, or 2.468 > 2.326	M1	Al		+ 01 - , 2.47
		Reject H ₀ and accept that the proportions differ on the island.	A1	8	Con	clusion in context
7	(i)	$T_1 \sim N(2.2,0.75^2), T_2 \sim N(1.8,0.70^2)$ Use $T_2 - \frac{1}{2} T_1$ normal μ =0.7	M1 A1		Or ½	$\sqrt{2}T_1 - T_2$
		$\sigma^2 = 0.7^2 + \frac{1}{4} \times 0.75^2 \ (0.630625)$ (0- μ)/ σ	A1 M1			n reasonable σ^2 not just sum
		-0.881 Probability 0.189	A1	A1	+ or 6	-
(ii)	Use s	sum of 5 Ts M1	A 4		- ens are over are vir our left fiel had	ada da
		μ =9.4 σ^2 =2.5225	A1 A1			
		σ = 2.5225 z=(10- $μ$)/ $σ$	M1	Stan	dardisin	ig, must be σ
		Probability 0.6473,0.647	A1	5	aui dioii	19, 11100t po o
	(iii)	Calculation of variance B1	1			

8	(i)	$s_B^2 = \frac{1}{49} (630.194 - \frac{176.35^2}{50})$ =0.1675 $H_0: \mu_B - \mu_A = 0, H_1: \mu_B - \mu_A > \infty$ $z=0.115/\sqrt{(0.049/40 + 0.1675/50)}$ =1.700 $z > 1.645, \text{ reject } H_0$ and accept that $\mu_B > \mu_A$	M1 A1 > 0 M1 A1 M1 A1 A1 A1 √	B1	Any equivalent formula May be implied by later work aef Standardising but not from pooled variance estimate art 1.70 Compare correctly with 1.645 ft their calculated z
	(ii)	$z = 0.09 / \sqrt{(0.004575)}$ = 1.331 H ₀ not rejected for $\alpha < 9.16$	M1 A1 M1 A	1 4	Correct form Accept $< 9.2, \le 9.2$. M1 for correct method for 9.2, A1 for inequality
		(b) Not necessary enough for CLT to be applied (nor of sample means giving normality difference)	mality	B1 3	Ignore any reason Mention of CLT implied by "sample large" Sample mean (approx) normal. (Do not award if population or sample said to be normal)

Mark Scheme 4735 June 2006

1	(i)	(a) True	•		B0 for 0,1 correct, B1 for 2 correct,
		(b) False (c) True	B2	2	B2 for 3 correct.
bif for pay on he ha par a	(ii)	Var(2X-Y)= 4Var(X)+Var(Y)-4Cov(X,Y)	M1 A1		Using formula
		6=11-4Cov(X,Y) Cov(X,Y)=5/4	A1	M1 4	Obtain cov cao
2		EITHER: sample is random OR twin pa			
		chosen independently	B1		
		$H_0: m_F = m_S$, $H_1: m_F > m_S$ Use of B(60,0.5)	.B1	M1	For both using medians
		Normal approx with μ =30, σ^2 =15		A1	Both
		EITHER: $z=(36.5-30)/\sqrt{15}$	М1		Standardising
		=1.678	A2		A1 if correct apart from missing or wrong cc
		OR:CR is (X-30-0.5)/√15 >1.645 X≥37	A2	M1	Setting up inequality A1 if correct apart from missing or wrong c.c.
		EITHER: 1.678> 1.645			-
		OR: Sample value 37 in CR There is evidence that the first-born male twins are taller than the second	M1		Correct comparison
		-born twin in a majority of cases. OR: p-value: 0.0467 > 1.645	A1 M1		Conclusion in context
		Completion NB: Exact Bin (60,0.5) p-value is 0.046	A1 23 from	9 graphic	al calculator: full credit
3	(i)	P(C)=P(C F)P(F)+P(C F')P(F')		M1	Use of formula
		=0.98×0.05 + 0.04×0.95 0.087 AG	A1 A1	3	·
	(ii)	$P(F \mid C) = \frac{0.05 \times 0.98}{0.05 \times 0.98 + 0.95 \times 0.04}$	M1A1		
		=0.5632		A1	3 art 0.563 or 49/87
	(iii)	P(F C')=P(C' F)P(F) / P(C') 0.02×0.05/0.913 [0.001095]	M1	A1	Conditional prob.
		5000×above = 5.476., 5.48.	M1A1		ft a conditional prob.

4 (i)
$$M_X(t) = \int_a^b \frac{1}{b-a} e^{xt} dt$$
 M1 Correct integral with limits
$$= \left[\frac{e^{xt}}{(b-a)t} \right]_a^b$$
 B1 Correct integral
$$= \frac{e^{bt} - e^{at}}{(b-a)t} AG$$
 A1 3

(ii)	Product of mgfs	M1			
	$\left(\frac{1-e^{-t}}{t}\right)\left(\frac{e^t-1}{t}\right)$	A1	2		
(iii)	$M_{S}(t) = \left(\frac{e^{\frac{1}{2}t} - e^{-\frac{1}{2}t}}{t}\right)^{2}$	M1		Square of M _Y (t)	
	= (e ^t -2+e ^{-t})/t ² mgfs of S and T are same S and T have identical distribut	A1dep tions B1	depA1 4	Correctly shown Correctly shown	
(i)	¹³ C ₄ 715	M1 A1	2	Use of formula	(ii)
1234,	,1235,1236,1237,1245,1246,	- Artic wide wide desig dies mile was diese was was an		44, 40, 40, 10, 100 40 100 40 100 100 100 100 100 100 1	(ii)
	1345 B1√ 3	B2 ft (i)		B1 for 5 or 6	7/715
(iii)	Wilcoxon Rank Sum Test H ₀ :m _X =m _Y , H ₁ :m _X ≠m _Y Use P(<i>R</i> ≤13)	B1 M1	B1	Both, involving medians	
	2×7/715×100 =1.958% < 2% Reject H ₀ , evidence of differen	M1		Comparing correctly	

Α1

5

medians at a significance level of

B1B1 M1 for CV with correct comparison for rejection M1 for rejection at 2% (not <)

(smaller than) 2%

SR: If tables used,

Max 4/5

5

6	(i)	$G'(t)=[0.8(1-0.2t)+0.16t]/(1-0.2t)^2$	M1 A1		Quotient or product rule	
		G'(t)=0.8/0.8 ² =5/4 AG	A1	3		/** <u>*</u>
	G(t)=0	$0.8t (1-0.2t)^{-1} $	A1 A1 A1	Use bin	omial expansion At least 2 correct terms OR from G(0.8)	(ii)
	EITHE	ER: $Y \sim G(0.8)$ B1 $Var(Y) = (1-0.8)/0.8^2$ = 0.3125 $OR: G''(t) = 0.32/(1-0.2t)^3$ Use $G''(1) + G'(1) - (G'(1))^2$ 0.3125	M1 B1 M1 A1	Parame A1	eter not required	(iii)
	$G_{\tau}(t)=$	0.8 $^{6}t^{6}(1-0.2t)^{-6}$ B1 P($T \ge 8$)=1-0.8 $^{6}(1+6 \times 0.2)$ =0.42328	M1 A1	(G _Y (t)) ⁵	Two terms in bracket art 0.423	(iv)
7	(i)	E(X)= $\frac{1}{2}(n+1)$ Var(X)= $\frac{1}{n}\sum_{1}^{2}-\frac{1}{4}(n+1)^{2}$ = $\frac{1}{6}(n+1)(2n+1)-\frac{1}{4}(n+1)^{2}$ = $\frac{1}{12}(n^{2}-1)$ AG	B1 M1	A1 4	Use of variance formula	ı
	(ii)	$E(N_1)=E(X_1)+E(X_2)-1$ =\frac{1}{2}(n+1) + \frac{1}{2}(n+1)-1 =n,(so N_1 is an unbiased estimator of n)	M1	2		
		P(M = r)= ER: P($X_1 < r, X_2 = r$) +P($X_1 = r, X_2 < r$) =($(r-1)/n$)(1/ $(n-1)$) + (1/ n)($r-1$)/($n-1$) =2($r-1$)/[$n(n-1)$] AG, $r=2,3,4,$ Choose 1 from $r-1$ and 1 from 1	M1 A1 A1 M1			
	OR:	choose f from f and f from f $f^{-1}C_1 \times {}^{1}C_1 / {}^{n}C_2$ = $(r-1)/[\frac{1}{2}n(n-1)]$ =AG	A1 A1	3		
	(iv)	$E(M) = \frac{2}{n(n-1)} \sum_{r=2}^{n} r(r-1)$	M1			
	·	$=\frac{1}{2}(n+1)$ $N_2 = \frac{3}{2}M-1$	A1√	A1 3	ft E(<i>M</i>)	
	(v)	$Var(N_1) < Var(N_2)$ or equivalent ${}^{1}/_{6}(n^2-n-2) < {}^{9}/_{4}Var(M)$ $Var(M) > {}^{2}/_{27}(n^2-n-2)$	M1 A1 A1√	3	Stated or implied ft N_2	

Mark Scheme 4736 June 2006

1	(i)	2 4 3 3 2 5 4		
		Box 1 2 4 2 Box 2 3 3 Box 3 5 Box 4 4	M1 A1 [2]	For packing these seven weights into boxes with no more than 8 kg total in each box For this packing
	(ii)	5 4 4 3 3 2 2 Box 1 5 3 Box 2 4 4 Box 3 3 2 2	B1 M1 A1 [3]	For putting the weights into decreasing order (may be implied from packing) For packing the seven weights into three boxes with no more than 8 kg total in each box
	(iii)	15×2^2 = 60 seconds	M1 A1 [2]	For this packing For a correct calculation For 60 or 60 seconds or 1 minute
2	(i)		M1 A1 [2]	Graphs may be in any order For a reasonable attempt For a graph that is topologically equivalent to one of these graphs
		graph A graph B graph C other solutions:	M1 A1 [2]	For a different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	The state of the s	or V	M1 A1 [2]	For another different reasonable attempt For a graph that is topologically equivalent to one of these graphs
	(ii)	The graphs each have four odd nodes, but Eulerian graphs have no odd nodes.	B1 [1]	For any recognition that the nodes are not all even
				7

4736

June 2006

3	(i)	Travelling salesperson	B1 [1]	Identifying TSP by name
	(ii)	A-B-E-G-F-D-C-A	M1	For starting with $A - B - E - G$
1			A1	For this closed tour
l		130 (minutes)	B1	For 130
		Shortest possible time ≤ 130 minutes	B1 [4]	For less than or equal to their time, with units
	(iii)	Order of connecting: B, E, G, F, D, C	B1	For a valid vertex order (or arc order) for their starting point
		B 20 E or B 20 E	M1	For a diagram or listing showing a tree connecting the vertices <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> and <i>G</i> but not <i>A</i>
		D^{\bullet} G D	A1	DULTION
		G 20 20 20 20		For a diagram showing one of these trees (vertices must be labelled but arc weights are not needed)
		20	M1 M1	
		C F C F	A1 [6]	For stating or using the total weight of their tree
		Lower bound = 10 + 15 + 95 = 120 minutes		For stating or using AB and AD or 10 + 15 For 120 or calculating 25 + their 95, with units
	(iv)	A-B-E-G-F-C-D-A	M1	For a reasonable attempt
1		or this in reverse	A1 [2]	For a valid tour of weight 125
				13

4	(i)	x < 2	B1		Strict inequalities used, penalise first time
	'	y <u>≥</u> 1	B1		only
		$y \leq 2x$	B1		All inequalities reversed, penalise first time
		$x+y \leq 4$	B1	[4]	
1	(ii)	(2, 1), (2, 2)	B1		Both of these
	` `	(½, 1)	B1		This vertex in any exact form
		(1½, ,2½)	B1	[3]	This vertex in any exact form or correct to 3 sf
	(iii)	x y P=x+2y 2 1 4			
	- transfer to the state of the	2 1 4 2 2 6 1/2 1 21/2 1/3 21/3 61/3	M1		Evidence of checking value at any vertex or using a sliding profit line
		$x = 1 \frac{1}{3}, y = 2 \frac{3}{3}$	A1		Their x and y values at maximum in any
		(may be given in coordinate form)			exact form or correct to 3 sf
		$P = 6\frac{2}{3}$	A1	[3]	Their maximum <i>P</i> value in any exact form or correct to 3 sf
	(iv)	x y Q =2 x - y			
		x y Q=2x-y 2 1 3 2 2 2 ½ 1 0	1		
		2 2 2	M1		Evidence of checking value at any vertex or using a sliding profit line
		11/3 21/3 0			using a sliding profit file
		Q = 0			
			A1		0 (cao)
		(x, y) can be any point on the line segment joining $(\frac{1}{2}, 1)$ and $(\frac{1}{3}, \frac{2}{3})$	A1	[3]	The edge of the feasible region where $y = 2x$ No follow through
	(v)	$P=Q \Rightarrow 2x-y=x+2y$	M1		For considering $P = Q$, or equivalent
	1 /	$\Rightarrow x = 3y$	A1		For this line, or any equivalent reasoning
		$y = \frac{1}{3}x$ lies entirely in the shaded region	A1	[3]	For explanation of why there are no solutions
					16

5	(i)	2x - 5y + 2z + s = 10									
	, ,	2x + 3z							B1	[1]	Slack variables used correctly
1	(ii)	P	P x y z s t						M1		For overall structure correct, including two
		1	-1	2	3	0	0	0			slack variable columns and column for RHS
		0	2	-5	2	1	0	10		[2]	(condone omission of <i>P</i> column or labels) For a completely correct initial tableau, with
			2	n	3	0	1	30	10'	[2]	no extra constraints added (condone
İ											variations in order of rows or columns)
1	(iii)							nly columi	<u> </u>	~ + + + + +	
		with a negative value in the objective row							B1		For negative in objective row, top row, pay-
		$10 \div 2 = 5$ 5 < 15 so pivot on this row						on this row	/ _{D4}	[0]	off row, or equivalent
1		$30 \div 2 = 15$							B1	[2]	Lw
	(iv)	New row 2 = row 2 ÷ 2					_		B1	101	For dealing with the pivot row correctly
1		New row 1 = row 1 + new row 2						. ^	B1	[2]	For dealing with the other rows correctly May be coded by rows of table
	İ	New row 3 = row 3 – 2 × new row 2					****			****	L
İ]	1		0.5	4	0.5			M1 M1		For updating their pivot row correctly For a reasonable attempt at updating other
]		0 1 -2.5 1 0.5 0 5 0 0 5 1 -1 1 20							A1	1	rows
								20		[-]	For correct values in tableau (condone
1											consistent order of rows or columns). Do not
									İ		follow through errors in initial tableau or pivot
											choice.
1		x = 5, y	r=0,	z = 0					B1		For reading off x, y and z from their tableau
		P=5							B1		For reading off <i>P</i> from their tableau
		Not the maximum feasible value of <i>P</i> since							B1	[3]	'No' seen or implied and a correct reason
		there is still a negative value in the					in th	е			[63]
<u></u>	<u> </u>	objecti	ve ro	W							13

6	(a)	1 0 3 7		ANSWERED ON INSERT
	***************************************	A B C	M1	Values correct at <i>B</i> , <i>D</i> and <i>E</i> (condone temporary labels implied from permanent labels) Both 54 and 37 seen at <i>H</i> and both 51 and 47 seen at <i>G</i> (method)
		2	A1 B1	All temporary labels correct and no extras All permanent labels correct
	Andried de de la companya de la comp	D E F G	B1	Order of labelling correct (condone boxes consistently swapped over)
		5 9 48 54 27 48		
		H J A-E-H-J 48 metres	B1 B1 [7]	For this route, including end vertices (cao) For 48 (cao)
	(b)	A and J are the only odd nodes $48 + 300$ = 348 metres	B1 M1 A1 [3]	Identifying odd nodes (or by implication) For their 48 + 300 (or their 300) 348 (cao)
	(ii)	Odd nodes A , B , H , J AB = 24 $AH = 37$ $AJ = 48HJ = 11$ $BJ = 38$ $BH = 34Repeat AB and HJ = 35300 - 30 = 270$ metres Shortest distance = $270 + 35 = 305$ metres	B1 B1 B1 M1 M1 A1 [6]	Identifying odd nodes (or by implication) For distances from A — or from their Dijkstra For distances HJ , BJ , BH correct Choosing their least pairing or by implication Or by implication 305 (cao)
	1			16

Mark Scheme 4737 June 2006

1	(i)	4+4+8+7+6 = 29 litres per second	B1 [1]	For 29
	(ii)	4-1-2+3+3+5 = 12 litres per second	M1	For using upper and lower capacities
ļ		0	A1 M1	correctly
		0-5-4+3+0+5=-1	1	For showing how 12 (given) was worked
		So minimum flow across cut is 0	A1	out
			[4]	For a substantially correct calculation
1				For 0, from an appropriate calculation
1	(iii)	Flow in arc $CE \ge 2$ and flow in arc $CF \ge 1$	M1	For any reasonable attempt (eg $CE = 2$,
		3,	A1	CF = 3)
		so at least 5 litres per second must flow		For correct reasoning
		into C	M1	, , , , , , , , , , , , , , , , , , , ,
				For identifying ≤ 4 in and ≥ 3 out or
		At most 4 litres per second flow into A, of	A1	equivalent
		which at least 1 flows out to B and 2 flow	[4]	
		out to E, so at most 1 litre per second		For a correct conclusion
İ		can flow along AD	ļ.,	
ľ	(iv)	Either a diagram or a description of a	M1	For a flow of 11 litres per second from S
		flow of 11 litres per second.		to T
		Arcs AD, AE, BE, CE, CF must all be at	A1	
		their minimum capacities.	A1	Flow satisfies all lower capacities
			[3]	Flow satisfies all upper capacities
1	(v)	11 ≤ maximum flow ≤ 12	B1	11 as lower bound
			B1	12 as upper bound (max flow = 12 ⇒
			[2]	B0, B1)
				14

2	(i)			r which is grea	the minimum w test	veight	B1 B1 [2]	For identifying route minima For identifying what has been maximised ('maximises the minimum' ⇒ B0 B1)
	(ii)	Stage 1 2 Maxim (0; 0)	Stat e 0 1 2 0 1 1 0 0 nin rou	Action 0 0 0 1 2 0 1 2 1 1 2 0 1	min(16,18) =16 min(13,15) =13 min(14,15) =14 min(19,18) =18 min(13,15) =13 min(18,15) =15 min(20,16) =16 min(16,18) =16	Maximin 18 15 15 16 18	B1 B1 [2] - M1 A1 M1 A1 [6] - B1 B1 B1 [3]	Stage and state columns completed correctly Action column completed correctly For calculating minima for stage 2 state 0 For maximin values identified (may be implied from working seen for stage 3) For calculating minima for stage 2 state 1 For maximin values identified (may be implied from working seen for stage 3) For calculating minima for stage 3 For maximin value identified (Forwards working scores M0, M0, M0) For first correct route For second correct route For 16 tonnes (with units)
	(iii)	(3; 0) – (2; 1) – (1; 0) – (0; 0) Maximum load = 16 tonnes 18 tonnes (3; 0) – (2; 0) – (2; 1) – (1; 0) – (0; 0)						For 18 For this route

 		M1	For 3 (allow -3)		
(i)	3	A1	For Y (cao)		
	Y	[2]			
	7	M1	For an appropriate comparison, or implied		
(ii)	5 > 3, -2 > -4, 5 > -1 and 6 > 0	A1	For all four comparisons seen		
	or using signs of differences +2, +2, +6,	, , ,			
	+6	M1	For an appropriate comparison, or implied		
		A1	For all four comparisons seen		
	3 > -2, -5 > -6, 1 > 0, 4 > 2 or equivalent, or using differences		,		
	Reduced matrix:				
	Colin's strategy				
	<u> </u>	B1	For correct reduced matrix, with rows and		
	A -1 4 -3	[5]	columns labelled A, B, D and W, X, Y		
	Rose's B 5 -2 5		Cao		
	strategy				
	D -5 6 -4				
			Follow through their 3×3 reduced matrix		
(iii)	Row minima are -3, -2, -5	N A 4			
(/	Play-safe for Rose is B	M1	For identifying row B		
	Column maxima are 5, 6, 5	M1	For identifying columns W and Y		
	Play-safes for Colin are W and Y	IVII	Por Identifying Coldmin 17 and		
		A1.	For 'no' or 'not stable'		
	Not stable	[3]	1 of the of the charte		
	d the manufacture	M1	For 'add 5' or equivalent		
(iv)	5 is added throughout the matrix to	IVI I	101 0000		
	make the entries non-negative.				
	In this augmented reduced matrix, 9p ₁ +	A1	For identifying that this is when Colin		
	$3p_2 + 11p_3$ is the expected number of	[2]	plays strategy X		
	points won by Rose when Colin plays	[4-]			
	strategy X				
(v)					
	$\Rightarrow m \le \frac{298}{48}$ (or $6\frac{5}{24}$, 6.2083, 6.21)	M1	For attempting to evaluate m		
	in all three cases	1,4,1			
	$\Rightarrow M = \frac{58}{48} \text{ (or } \frac{29}{24}, 1, \frac{5}{24}, 1.2083, 1.21)$	A1	cao (in any appropriate form)		
	$\Rightarrow IVI = \frac{1}{48} \left(01 \frac{1}{24}, 1 \frac{1}{24}, 1 \cdot 2000, 1 \cdot 21 \right)$	[2]			
		£J	14		

4	(i)					ANSWERED ON INSERT			
	(-)	Activity	Duration	Immediate					
				predecessors					
		Α	6	-	B1	For predecessors for activities A, B and			
		В	4	-		C correct			
ĺ		С	5	A .	B1				
		D	1	A, B		For predecessors for activities <i>D</i> , <i>F</i>			
		E	5	A, D		and, G correct			
		F G	2	D C, E, F	B1	,			
		<u> </u>			[]] [3]				
1			******	*****************		For predecessors for activity <i>E</i> correct			
	(ii)		6 6	С					
		,	*		ļ				
		· 🔏	4		M1	For carrying out forward pass (no more			
		0.16		\		than one independent error)			
	12	0.10	*		─● A1	For all early event times correct			
	[12]	14	, F9	¥ 7	***************************************				
	G	\	. [M1				
			*	`	IVI I	For carrying out backwards pass (no more than one independent error)			
	14	14			A1	For all late event times correct			
				4					
		Minimum	completion t	ime = 14 hours					
		Critical ac	tivities: A, D	, <i>E</i> , <i>G</i>	B1	For 14 cao			
					B1	For A, D, E, G only cao			
	/:::\	Inoroso	d by 2 (hours	-)	[6] B1	For stating that time increases by 2, or			
1	(iii)		16 (hours)	<i>3)</i>	[1]	equivalent			
	(iv)	Worker			B1	For a resource histogram with no			
	17.7	s T				overhanging cells			
		4							
İ					M1	For a reasonable attempt, ft their start			
		2			<u> </u>	times if possible For a completely correct histogram (cao)			
		n l				For a completely correct histogram (cao)			
		0 2 16	4 6	8 10 12	14 B1	For 3 or follow through their histogram if			
		hours			[4]	possible			
		Number o	of workers re	quired = 3		,			
						14			

June 2006

				ANSWERED ON INSERT
5	(i)	<i>J</i> A •	M1	For a substantially correct attempt
		•		•
		κ ^B	A1 [2]	For a completely correct bipartite graph
		c •		
		L		
1		D		
		M d	·	
	(ii)	C-N E-M F-K	M1	For pairing $F - K$, $C - N$, $E - M$
		A-J $B-L$ $D-O$	A1 [2]	For all correct (Diagram only M1, A0)
	(iii)	J K L M N O		
		A 2 5 2 2 5 2	B1	For '5' in all the entries that should be 5
		B 2 5 2 0 5 5 C 5 0 5 5 2 2	B1	For '2' in all the entries that should be 2
		D 2 5 0 5 5 2	B1	For '0' in all the entries that should be 0
		E 5 2 5 2 0 5 F 2 2 5 5 2 2	[3]	
	(iv)	Reduce rows		
	(10)	0 3 0 0 3 0	M1	For a substantially correct attempt from
		5 0 5 5 2 2	101 1	their matrix
		2 5 0 5 5 2 5 2 5 2 0 5	A1	For a correct reduction of rows and
		0 0 3 3 0 0		columns (or columns and rows) for their matrix
		Columns are already reduced		
		Or, reduce columns 0 5 2 2 5 0		
		0 5 2 0 5 3		
		3 0 5 5 2 0 0 5 0 5 5 0		,
		3 2 5 2 0 3 0 2 5 5 2 0		
		Rows are already reduced	M1	
		Cannot cross out 0's using fewer than 6		For achieving a reduced cost matrix with
		lines so matching is complete	A1	a complete matching of zero cost (without unnecessary augmenting)
		A-J B-M C-K D-L E-N	B1 B1	O's in correct cells (not ft) For this matching or ft their reduced cost
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	matrix
		F-J	B1	For this matching or ft their reduced cost matrix
		First matching: Fred and Jenny	[8]	For the names for their first matching
		Second matching: Jenny and Olivia		For the names for their second matching
			<u> </u>	

Advanced GCE Mathematics (3890, 3892, 7890) June 2006 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	e	u
4721	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	53	45	37	29	22	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	60	52	44	37	30	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	60	52	44	37	30	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	50	43	37	31	25	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	58	50	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	43	36	29	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	58	50	43	36	29	0
	. UMS	100	80	70	60	50	40	0
4731	Raw	72	51	44	37	30	23	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	56	49	42	35	29	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	52	44	36	29	22	0
.,	UMS	100	80	70	60	50	40	0
4734	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	54	47	40	33	27	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0

4737	Raw	72	61	53	45	38	31	0
1	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	31.0	46.3	61.2	73.5	84.2	100	12438
3891	0	0	0	100	100	100	1
3892	60.6	76.8	89.2	95.3	97.6	100	1109
7890	46.9	67.7	81.9	91.5	97.6	100	9525
7891	50.0	75.0	87.5	87.5	100	100	8
7892	59.9	80.2	89.4	95.5	98.6	100	1428

For a description of how UMS marks are calculated see; www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp

Statistics are correct at the time of publication